Back to list of Stocks    See Also: Seasonal Analysis of FMIMXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of FMIMX (FMI Common Stock Fund)

FMIMX (FMI Common Stock Fund) appears to have interesting cyclic behaviour every 153 weeks (.8021*sine), 142 weeks (.6096*sine), and 167 weeks (.5457*sine).

FMIMX (FMI Common Stock Fund) has an average price of 7.53 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 12/18/1981 to 3/20/2017 for FMIMX (FMI Common Stock Fund), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
07.53024   0
13.88028 -5.91059 (1*2π)/18401,840 weeks
21.12647 -3.29704 (2*2π)/1840920 weeks
3.71996 -2.64885 (3*2π)/1840613 weeks
4.00738 -2.39267 (4*2π)/1840460 weeks
5-.43215 -1.58624 (5*2π)/1840368 weeks
6-.04802 -1.16413 (6*2π)/1840307 weeks
7.1406 -1.14258 (7*2π)/1840263 weeks
8-.22899 -1.02983 (8*2π)/1840230 weeks
9-.13075 -.53676 (9*2π)/1840204 weeks
10.00694 -.34701 (10*2π)/1840184 weeks
11.28524 -.54566 (11*2π)/1840167 weeks
12.0448 -.80211 (12*2π)/1840153 weeks
13-.00276 -.60959 (13*2π)/1840142 weeks
14.13366 -.50046 (14*2π)/1840131 weeks
15.12343 -.57276 (15*2π)/1840123 weeks
16.06052 -.53943 (16*2π)/1840115 weeks
17-.0245 -.55177 (17*2π)/1840108 weeks
18.10479 -.3643 (18*2π)/1840102 weeks
19.10737 -.45998 (19*2π)/184097 weeks
20.06677 -.46623 (20*2π)/184092 weeks
21.04225 -.44431 (21*2π)/184088 weeks
22.02265 -.4299 (22*2π)/184084 weeks
23.03088 -.34282 (23*2π)/184080 weeks
24.11739 -.41667 (24*2π)/184077 weeks
25.00032 -.45431 (25*2π)/184074 weeks
26-.08419 -.38599 (26*2π)/184071 weeks
27-.13754 -.18363 (27*2π)/184068 weeks
28.03861 -.19369 (28*2π)/184066 weeks
29.05451 -.35557 (29*2π)/184063 weeks
30-.09506 -.40988 (30*2π)/184061 weeks
31-.09468 -.20798 (31*2π)/184059 weeks
32-.00936 -.19474 (32*2π)/184058 weeks
33.01299 -.17369 (33*2π)/184056 weeks
34-.01113 -.16611 (34*2π)/184054 weeks
35.01279 -.13493 (35*2π)/184053 weeks
36.06704 -.28984 (36*2π)/184051 weeks
37.03374 -.29217 (37*2π)/184050 weeks
38-.0132 -.28251 (38*2π)/184048 weeks
39-.05995 -.13424 (39*2π)/184047 weeks
40.03978 -.12667 (40*2π)/184046 weeks
41.0921 -.21431 (41*2π)/184045 weeks
42.03741 -.25902 (42*2π)/184044 weeks
43-.04701 -.23737 (43*2π)/184043 weeks
44-.01863 -.19553 (44*2π)/184042 weeks
45.00757 -.19504 (45*2π)/184041 weeks
46-.02723 -.17696 (46*2π)/184040 weeks
47-.01844 -.17987 (47*2π)/184039 weeks
48-.01789 -.16788 (48*2π)/184038 weeks
49.03603 -.19665 (49*2π)/184038 weeks
50.0016 -.17485 (50*2π)/184037 weeks
51-.00312 -.15117 (51*2π)/184036 weeks
52.0123 -.18984 (52*2π)/184035 weeks
53-.04137 -.16399 (53*2π)/184035 weeks
54.05256 -.17122 (54*2π)/184034 weeks
55-.00871 -.1984 (55*2π)/184033 weeks
56-.00368 -.18204 (56*2π)/184033 weeks
57-.04158 -.1823 (57*2π)/184032 weeks
58-.06262 -.18775 (58*2π)/184032 weeks
59-.0882 -.12898 (59*2π)/184031 weeks
60-.0426 -.11601 (60*2π)/184031 weeks
61.02098 -.13041 (61*2π)/184030 weeks
62-.00617 -.18103 (62*2π)/184030 weeks
63-.04897 -.12721 (63*2π)/184029 weeks
64-.05236 -.13095 (64*2π)/184029 weeks
65-.04581 -.11045 (65*2π)/184028 weeks
66-.01059 -.13155 (66*2π)/184028 weeks
67.00124 -.12225 (67*2π)/184027 weeks
68-.03492 -.13935 (68*2π)/184027 weeks
69-.01376 -.08763 (69*2π)/184027 weeks
70-.02496 -.10378 (70*2π)/184026 weeks
71-.02941 -.09116 (71*2π)/184026 weeks
72-.01866 -.13997 (72*2π)/184026 weeks
73-.03233 -.09119 (73*2π)/184025 weeks
74.00482 -.09504 (74*2π)/184025 weeks
75.00536 -.09117 (75*2π)/184025 weeks
76-.00235 -.09107 (76*2π)/184024 weeks
77.00266 -.09128 (77*2π)/184024 weeks
78.01267 -.11088 (78*2π)/184024 weeks
79.01447 -.14178 (79*2π)/184023 weeks
80-.01699 -.12402 (80*2π)/184023 weeks
81-.01093 -.0955 (81*2π)/184023 weeks
82-.02283 -.10879 (82*2π)/184022 weeks
83-.01772 -.10945 (83*2π)/184022 weeks
84-.04859 -.10524 (84*2π)/184022 weeks
85-.00969 -.09632 (85*2π)/184022 weeks
86-.00296 -.12476 (86*2π)/184021 weeks
87-.01555 -.13009 (87*2π)/184021 weeks
88-.06514 -.11769 (88*2π)/184021 weeks
89-.06678 -.06031 (89*2π)/184021 weeks
90-.01631 -.06292 (90*2π)/184020 weeks
91-.01065 -.09057 (91*2π)/184020 weeks
92-.04217 -.09263 (92*2π)/184020 weeks
93-.04717 -.05999 (93*2π)/184020 weeks
94-.00786 -.05987 (94*2π)/184020 weeks
95-.04452 -.09974 (95*2π)/184019 weeks
96-.05487 -.04601 (96*2π)/184019 weeks
97-.03057 -.04878 (97*2π)/184019 weeks
98.00579 -.03441 (98*2π)/184019 weeks
99.01448 -.06574 (99*2π)/184019 weeks
100-.01086 -.07658 (100*2π)/184018 weeks
101-.03479 -.04334 (101*2π)/184018 weeks
102.0184 -.03254 (102*2π)/184018 weeks
103.02885 -.0589 (103*2π)/184018 weeks
104.02053 -.09427 (104*2π)/184018 weeks
105-.01063 -.07039 (105*2π)/184018 weeks
106.00659 -.05002 (106*2π)/184017 weeks
107.02157 -.09865 (107*2π)/184017 weeks
108-.00168 -.11118 (108*2π)/184017 weeks
109-.0328 -.09156 (109*2π)/184017 weeks
110-.01957 -.0467 (110*2π)/184017 weeks
111.03025 -.0578 (111*2π)/184017 weeks
112.00406 -.10942 (112*2π)/184016 weeks
113-.0406 -.09838 (113*2π)/184016 weeks
114-.04488 -.06274 (114*2π)/184016 weeks
115-.00066 -.0411 (115*2π)/184016 weeks
116.02154 -.0744 (116*2π)/184016 weeks
117-.007 -.08959 (117*2π)/184016 weeks
118-.02408 -.07016 (118*2π)/184016 weeks
119-.00745 -.05126 (119*2π)/184015 weeks
120-.00672 -.07019 (120*2π)/184015 weeks
121-.01941 -.08194 (121*2π)/184015 weeks
122-.02372 -.05927 (122*2π)/184015 weeks
123.00501 -.0537 (123*2π)/184015 weeks
124.00575 -.061 (124*2π)/184015 weeks
125-.0059 -.07332 (125*2π)/184015 weeks
126-.02595 -.06325 (126*2π)/184015 weeks
127-.01843 -.05846 (127*2π)/184014 weeks
128.00209 -.05563 (128*2π)/184014 weeks
129-.00159 -.0728 (129*2π)/184014 weeks
130-.01115 -.058 (130*2π)/184014 weeks
131-.00796 -.06984 (131*2π)/184014 weeks
132-.00177 -.07839 (132*2π)/184014 weeks
133-.01374 -.07794 (133*2π)/184014 weeks
134-.01152 -.06269 (134*2π)/184014 weeks
135-.00041 -.0456 (135*2π)/184014 weeks
136.01616 -.06319 (136*2π)/184014 weeks
137-.00482 -.07798 (137*2π)/184013 weeks
138-.009 -.09177 (138*2π)/184013 weeks
139-.03836 -.08127 (139*2π)/184013 weeks
140-.01209 -.06029 (140*2π)/184013 weeks
141-.00921 -.07178 (141*2π)/184013 weeks
142-.01814 -.05129 (142*2π)/184013 weeks
143-.01552 -.07481 (143*2π)/184013 weeks
144-.02961 -.07313 (144*2π)/184013 weeks
145-.03675 -.06477 (145*2π)/184013 weeks
146-.02754 -.04956 (146*2π)/184013 weeks
147-.01706 -.03734 (147*2π)/184013 weeks
148-.01329 -.05153 (148*2π)/184012 weeks
149-.00877 -.05095 (149*2π)/184012 weeks
150-.01817 -.06511 (150*2π)/184012 weeks
151-.01518 -.04788 (151*2π)/184012 weeks
152-.00013 -.06513 (152*2π)/184012 weeks
153-.01914 -.07243 (153*2π)/184012 weeks
154-.02122 -.0511 (154*2π)/184012 weeks
155-.0096 -.05618 (155*2π)/184012 weeks
156-.01647 -.07915 (156*2π)/184012 weeks
157-.0305 -.06843 (157*2π)/184012 weeks
158-.03579 -.06048 (158*2π)/184012 weeks
159-.04095 -.03602 (159*2π)/184012 weeks
160-.02559 -.03079 (160*2π)/184012 weeks
161-.02116 -.03701 (161*2π)/184011 weeks
162-.01442 -.02895 (162*2π)/184011 weeks
163-.00464 -.04632 (163*2π)/184011 weeks
164-.003 -.05328 (164*2π)/184011 weeks
165-.01423 -.05359 (165*2π)/184011 weeks
166-.00925 -.04517 (166*2π)/184011 weeks
167-.01052 -.06478 (167*2π)/184011 weeks
168-.03183 -.05568 (168*2π)/184011 weeks
169-.02338 -.05424 (169*2π)/184011 weeks
170-.02921 -.04357 (170*2π)/184011 weeks
171-.01436 -.03311 (171*2π)/184011 weeks
172-.01565 -.04575 (172*2π)/184011 weeks
173-.02344 -.03247 (173*2π)/184011 weeks
174-.0018 -.04402 (174*2π)/184011 weeks
175-.02315 -.06054 (175*2π)/184011 weeks
176-.02046 -.04356 (176*2π)/184010 weeks
177-.0106 -.03477 (177*2π)/184010 weeks
178-.01135 -.0438 (178*2π)/184010 weeks
179-.01164 -.04585 (179*2π)/184010 weeks
180-.01827 -.0487 (180*2π)/184010 weeks
181-.00954 -.05282 (181*2π)/184010 weeks
182-.02632 -.05123 (182*2π)/184010 weeks
183-.02725 -.03707 (183*2π)/184010 weeks
184-.01852 -.02993 (184*2π)/184010 weeks
185-.00604 -.03937 (185*2π)/184010 weeks
186-.0186 -.05392 (186*2π)/184010 weeks
187-.03609 -.05293 (187*2π)/184010 weeks
188-.03958 -.02574 (188*2π)/184010 weeks
189-.02013 -.01988 (189*2π)/184010 weeks
190-.00663 -.01485 (190*2π)/184010 weeks
191-.00853 -.03626 (191*2π)/184010 weeks
192-.01716 -.03858 (192*2π)/184010 weeks
193-.00222 -.03139 (193*2π)/184010 weeks
194-.0026 -.04535 (194*2π)/18409 weeks
195-.00993 -.04309 (195*2π)/18409 weeks
196-.01459 -.05093 (196*2π)/18409 weeks
197-.02098 -.03837 (197*2π)/18409 weeks
198-.0257 -.03497 (198*2π)/18409 weeks
199-.01909 -.03955 (199*2π)/18409 weeks
200-.02529 -.03665 (200*2π)/18409 weeks
201-.01561 -.01701 (201*2π)/18409 weeks
202-.00777 -.02575 (202*2π)/18409 weeks
203-.00222 -.03086 (203*2π)/18409 weeks
204-.01154 -.03949 (204*2π)/18409 weeks
205-.00949 -.03205 (205*2π)/18409 weeks
206-.02004 -.03675 (206*2π)/18409 weeks
207-.00865 -.01272 (207*2π)/18409 weeks
208.0095 -.03135 (208*2π)/18409 weeks
209.00427 -.04665 (209*2π)/18409 weeks
210-.01449 -.04735 (210*2π)/18409 weeks
211-.01166 -.04254 (211*2π)/18409 weeks
212-.01402 -.04465 (212*2π)/18409 weeks
213-.01147 -.03954 (213*2π)/18409 weeks
214-.03221 -.03542 (214*2π)/18409 weeks
215-.01533 -.01704 (215*2π)/18409 weeks
216-.01224 -.02801 (216*2π)/18409 weeks
217-.00212 -.03229 (217*2π)/18408 weeks
218-.01546 -.03871 (218*2π)/18408 weeks
219-.0036 -.02353 (219*2π)/18408 weeks
220.00909 -.03157 (220*2π)/18408 weeks
221.00222 -.04652 (221*2π)/18408 weeks
222-.01007 -.04654 (222*2π)/18408 weeks
223-.0101 -.04348 (223*2π)/18408 weeks
224-.01389 -.04995 (224*2π)/18408 weeks
225-.02898 -.04883 (225*2π)/18408 weeks
226-.02196 -.02749 (226*2π)/18408 weeks
227-.01255 -.02977 (227*2π)/18408 weeks
228-.01021 -.02629 (228*2π)/18408 weeks
229-.01153 -.04109 (229*2π)/18408 weeks
230-.01609 -.04083 (230*2π)/18408 weeks
231-.01907 -.04219 (231*2π)/18408 weeks
232-.01797 -.03427 (232*2π)/18408 weeks
233-.02323 -.03438 (233*2π)/18408 weeks
234-.01388 -.02417 (234*2π)/18408 weeks
235.00012 -.03264 (235*2π)/18408 weeks
236-.00255 -.04291 (236*2π)/18408 weeks
237-.0236 -.04424 (237*2π)/18408 weeks
238-.01947 -.02018 (238*2π)/18408 weeks
239.00177 -.02242 (239*2π)/18408 weeks
240-.00334 -.04694 (240*2π)/18408 weeks
241-.01972 -.05126 (241*2π)/18408 weeks
242-.02371 -.04084 (242*2π)/18408 weeks
243-.01788 -.03117 (243*2π)/18408 weeks
244-.01791 -.03933 (244*2π)/18408 weeks
245-.03249 -.03673 (245*2π)/18408 weeks
246-.03367 -.01915 (246*2π)/18407 weeks
247-.01265 -.01635 (247*2π)/18407 weeks
248-.0044 -.03385 (248*2π)/18407 weeks
249-.01464 -.03739 (249*2π)/18407 weeks
250-.02116 -.02862 (250*2π)/18407 weeks
251-.01522 -.0156 (251*2π)/18407 weeks
252-.01063 -.0235 (252*2π)/18407 weeks
253-.00143 -.02765 (253*2π)/18407 weeks
254-.00357 -.04752 (254*2π)/18407 weeks
255-.01631 -.04078 (255*2π)/18407 weeks
256-.01758 -.03677 (256*2π)/18407 weeks
257-.02722 -.02569 (257*2π)/18407 weeks
258-.02261 -.01638 (258*2π)/18407 weeks
259-.01446 -.01984 (259*2π)/18407 weeks
260-.00837 -.02581 (260*2π)/18407 weeks
261-.01447 -.03757 (261*2π)/18407 weeks
262-.02059 -.03249 (262*2π)/18407 weeks
263-.02349 -.01869 (263*2π)/18407 weeks
264-.00978 -.00953 (264*2π)/18407 weeks
265.00432 -.03012 (265*2π)/18407 weeks
266-.01078 -.04426 (266*2π)/18407 weeks
267-.01945 -.03357 (267*2π)/18407 weeks
268-.01533 -.02697 (268*2π)/18407 weeks
269-.00973 -.03016 (269*2π)/18407 weeks
270-.01866 -.03611 (270*2π)/18407 weeks
271-.02234 -.02835 (271*2π)/18407 weeks
272-.0144 -.02124 (272*2π)/18407 weeks
273-.00761 -.02962 (273*2π)/18407 weeks
274-.01563 -.03896 (274*2π)/18407 weeks
275-.02527 -.03123 (275*2π)/18407 weeks
276-.02387 -.02755 (276*2π)/18407 weeks
277-.02212 -.02262 (277*2π)/18407 weeks
278-.01669 -.02232 (278*2π)/18407 weeks
279-.0172 -.02403 (279*2π)/18407 weeks
280-.01198 -.01539 (280*2π)/18407 weeks
281-.01112 -.02372 (281*2π)/18407 weeks
282-.01672 -.02491 (282*2π)/18407 weeks
283-.02167 -.03044 (283*2π)/18407 weeks
284-.01967 -.01302 (284*2π)/18406 weeks
285-.00412 -.0149 (285*2π)/18406 weeks
286.0023 -.02919 (286*2π)/18406 weeks
287-.01614 -.03263 (287*2π)/18406 weeks
288-.02344 -.01835 (288*2π)/18406 weeks
289-.01183 -.01389 (289*2π)/18406 weeks
290-.00856 -.02814 (290*2π)/18406 weeks
291-.01736 -.03591 (291*2π)/18406 weeks
292-.02366 -.01757 (292*2π)/18406 weeks
293-.00919 -.00619 (293*2π)/18406 weeks
294.00217 -.0175 (294*2π)/18406 weeks
295-.01357 -.02439 (295*2π)/18406 weeks
296-.01522 -.01547 (296*2π)/18406 weeks
297-.00407 -.02027 (297*2π)/18406 weeks
298-.00399 -.02114 (298*2π)/18406 weeks
299.00051 -.02234 (299*2π)/18406 weeks
300-.00911 -.0273 (300*2π)/18406 weeks
301-.00252 -.02622 (301*2π)/18406 weeks
302-.00702 -.03486 (302*2π)/18406 weeks
303-.00708 -.03114 (303*2π)/18406 weeks
304-.01201 -.03161 (304*2π)/18406 weeks
305-.00802 -.0327 (305*2π)/18406 weeks
306-.01516 -.03166 (306*2π)/18406 weeks
307-.0119 -.02978 (307*2π)/18406 weeks
308-.01066 -.03349 (308*2π)/18406 weeks
309-.01697 -.03311 (309*2π)/18406 weeks
310-.01891 -.02235 (310*2π)/18406 weeks
311-.01571 -.02308 (311*2π)/18406 weeks
312-.01539 -.02026 (312*2π)/18406 weeks
313-.01207 -.03183 (313*2π)/18406 weeks
314-.01886 -.02857 (314*2π)/18406 weeks
315-.01683 -.02678 (315*2π)/18406 weeks
316-.01021 -.02255 (316*2π)/18406 weeks
317-.00431 -.02385 (317*2π)/18406 weeks
318-.01603 -.02984 (318*2π)/18406 weeks
319-.0139 -.03321 (319*2π)/18406 weeks
320-.02065 -.03809 (320*2π)/18406 weeks
321-.02484 -.03161 (321*2π)/18406 weeks
322-.01993 -.02756 (322*2π)/18406 weeks
323-.01999 -.02733 (323*2π)/18406 weeks
324-.02441 -.02659 (324*2π)/18406 weeks
325-.02792 -.01827 (325*2π)/18406 weeks
326-.02219 -.01644 (326*2π)/18406 weeks
327-.01521 -.02019 (327*2π)/18406 weeks
328-.02077 -.0282 (328*2π)/18406 weeks
329-.02848 -.0091 (329*2π)/18406 weeks
330-.00847 -.00922 (330*2π)/18406 weeks
331-.01366 -.02027 (331*2π)/18406 weeks
332-.01341 -.02491 (332*2π)/18406 weeks
333-.02196 -.01953 (333*2π)/18406 weeks
334-.01309 -.01005 (334*2π)/18406 weeks
335-.00545 -.01757 (335*2π)/18405 weeks
336-.01699 -.02401 (336*2π)/18405 weeks
337-.01652 -.01484 (337*2π)/18405 weeks
338-.01615 -.02286 (338*2π)/18405 weeks
339-.01147 -.01707 (339*2π)/18405 weeks
340-.01034 -.02498 (340*2π)/18405 weeks
341-.01974 -.0146 (341*2π)/18405 weeks
342-.00872 -.01292 (342*2π)/18405 weeks
343-.01324 -.02145 (343*2π)/18405 weeks
344-.01013 -.0185 (344*2π)/18405 weeks
345-.01169 -.03225 (345*2π)/18405 weeks
346-.02255 -.01708 (346*2π)/18405 weeks
347-.00826 -.0158 (347*2π)/18405 weeks
348-.0093 -.01649 (348*2π)/18405 weeks
349-.00953 -.02583 (349*2π)/18405 weeks
350-.01759 -.0212 (350*2π)/18405 weeks
351-.00835 -.02465 (351*2π)/18405 weeks
352-.00586 -.02762 (352*2π)/18405 weeks
353-.01818 -.03551 (353*2π)/18405 weeks
354-.02903 -.02516 (354*2π)/18405 weeks
355-.02887 -.01447 (355*2π)/18405 weeks
356-.02009 -.01163 (356*2π)/18405 weeks
357-.02074 -.01793 (357*2π)/18405 weeks
358-.01912 -.00928 (358*2π)/18405 weeks
359-.00991 -.00774 (359*2π)/18405 weeks
360-.00586 -.01216 (360*2π)/18405 weeks
361-.00844 -.01692 (361*2π)/18405 weeks
362-.01626 -.01703 (362*2π)/18405 weeks
363-.01326 -.00905 (363*2π)/18405 weeks
364.00102 -.01205 (364*2π)/18405 weeks
365.00316 -.0219 (365*2π)/18405 weeks
366-.00876 -.03053 (366*2π)/18405 weeks
367-.01425 -.02332 (367*2π)/18405 weeks
368-.00973 -.0252 (368*2π)/18405 weeks
369-.0114 -.02624 (369*2π)/18405 weeks
370-.01675 -.03173 (370*2π)/18405 weeks
371-.02187 -.02236 (371*2π)/18405 weeks
372-.02221 -.01845 (372*2π)/18405 weeks
373-.01718 -.01149 (373*2π)/18405 weeks
374-.01192 -.02211 (374*2π)/18405 weeks
375-.01769 -.0166 (375*2π)/18405 weeks
376-.01466 -.01419 (376*2π)/18405 weeks
377-.01191 -.01018 (377*2π)/18405 weeks
378-.01038 -.02072 (378*2π)/18405 weeks
379-.02087 -.01752 (379*2π)/18405 weeks
380-.00859 -.01291 (380*2π)/18405 weeks
381-.00208 -.02739 (381*2π)/18405 weeks
382-.01428 -.0305 (382*2π)/18405 weeks
383-.0244 -.02149 (383*2π)/18405 weeks
384-.02435 -.0113 (384*2π)/18405 weeks
385-.01529 -.01366 (385*2π)/18405 weeks
386-.01849 -.01345 (386*2π)/18405 weeks
387-.0135 -.01618 (387*2π)/18405 weeks
388-.01232 -.01437 (388*2π)/18405 weeks
389-.01292 -.01059 (389*2π)/18405 weeks
390-.00769 -.0106 (390*2π)/18405 weeks
391-.00845 -.01678 (391*2π)/18405 weeks
392-.01204 -.01405 (392*2π)/18405 weeks
393-.00823 -.02113 (393*2π)/18405 weeks
394-.00942 -.0227 (394*2π)/18405 weeks
395-.01194 -.02482 (395*2π)/18405 weeks
396-.01476 -.01701 (396*2π)/18405 weeks
397-.00737 -.02016 (397*2π)/18405 weeks
398-.00798 -.02847 (398*2π)/18405 weeks
399-.0176 -.02752 (399*2π)/18405 weeks
400-.01764 -.01917 (400*2π)/18405 weeks
401-.01488 -.02279 (401*2π)/18405 weeks
402-.02203 -.01991 (402*2π)/18405 weeks
403-.01724 -.02011 (403*2π)/18405 weeks
404-.02412 -.02023