Back to list of Stocks    See Also: Seasonal Analysis of FIDSXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FIDSX (Fidelity Select Financial Servi)


FIDSX (Fidelity Select Financial Servi) appears to have interesting cyclic behaviour every 153 weeks (4.6653*sine), 167 weeks (2.9889*cosine), and 167 weeks (2.5152*sine).

FIDSX (Fidelity Select Financial Servi) has an average price of 42.09 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/10/1981 to 3/20/2017 for FIDSX (Fidelity Select Financial Servi), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
042.08623   0 
1-6.26726 -35.28794 (1*2π)/18411,841 weeks
24.75917 -3.43527 (2*2π)/1841921 weeks
35.43309 -8.01076 (3*2π)/1841614 weeks
43.24682 -13.13766 (4*2π)/1841460 weeks
5-5.23943 -6.95841 (5*2π)/1841368 weeks
6.84611 -2.50643 (6*2π)/1841307 weeks
71.53371 -4.34863 (7*2π)/1841263 weeks
8-1.7963 -5.11251 (8*2π)/1841230 weeks
9-1.16589 -1.39784 (9*2π)/1841205 weeks
10.45615 .10187 (10*2π)/1841184 weeks
112.98888 -2.51525 (11*2π)/1841167 weeks
12-.85059 -4.6653 (12*2π)/1841153 weeks
13-.64852 -1.03238 (13*2π)/1841142 weeks
14.59657 -1.43249 (14*2π)/1841132 weeks
151.13911 -1.41533 (15*2π)/1841123 weeks
16.58879 -2.36765 (16*2π)/1841115 weeks
17-.25882 -1.97211 (17*2π)/1841108 weeks
18.62782 -1.03068 (18*2π)/1841102 weeks
19.88856 -1.55184 (19*2π)/184197 weeks
20.44285 -2.23791 (20*2π)/184192 weeks
21-.01677 -1.49302 (21*2π)/184188 weeks
22.32128 -1.77542 (22*2π)/184184 weeks
23.03595 -.85721 (23*2π)/184180 weeks
241.02495 -1.78683 (24*2π)/184177 weeks
25-.3467 -1.93418 (25*2π)/184174 weeks
26.03072 -1.53588 (26*2π)/184171 weeks
27-.90936 -.80199 (27*2π)/184168 weeks
28.83093 -.59299 (28*2π)/184166 weeks
29.22124 -1.54211 (29*2π)/184163 weeks
30-.07853 -1.71619 (30*2π)/184161 weeks
31-.35438 -.81421 (31*2π)/184159 weeks
32.16957 -1.07019 (32*2π)/184158 weeks
33-.11348 -.91114 (33*2π)/184156 weeks
34-.02434 -.75576 (34*2π)/184154 weeks
35.19667 -.59475 (35*2π)/184153 weeks
36.09841 -1.26017 (36*2π)/184151 weeks
37.2053 -.92051 (37*2π)/184150 weeks
38-.10835 -1.34145 (38*2π)/184148 weeks
39-.5738 -.57516 (39*2π)/184147 weeks
40.08709 -.32755 (40*2π)/184146 weeks
41.59687 -.859 (41*2π)/184145 weeks
42.05098 -1.03567 (42*2π)/184144 weeks
43-.02913 -.94476 (43*2π)/184143 weeks
44-.37625 -.7351 (44*2π)/184142 weeks
45.36996 -.6992 (45*2π)/184141 weeks
46-.22516 -.75585 (46*2π)/184140 weeks
47.22374 -.91528 (47*2π)/184139 weeks
48-.28653 -.58106 (48*2π)/184138 weeks
49.23399 -.85848 (49*2π)/184138 weeks
50-.19317 -.67989 (50*2π)/184137 weeks
51.10435 -.58918 (51*2π)/184136 weeks
52-.1263 -.831 (52*2π)/184135 weeks
53-.34906 -.62188 (53*2π)/184135 weeks
54.26235 -.36278 (54*2π)/184134 weeks
55-.04782 -.83804 (55*2π)/184133 weeks
56.05487 -.58159 (56*2π)/184133 weeks
57.00818 -.83675 (57*2π)/184132 weeks
58-.20598 -.71335 (58*2π)/184132 weeks
59-.19472 -.60174 (59*2π)/184131 weeks
60-.20991 -.54862 (60*2π)/184131 weeks
61.09635 -.53144 (61*2π)/184130 weeks
62-.12533 -.72274 (62*2π)/184130 weeks
63-.10763 -.47793 (63*2π)/184129 weeks
64-.07391 -.62642 (64*2π)/184129 weeks
65-.29078 -.62713 (65*2π)/184128 weeks
66-.21521 -.47988 (66*2π)/184128 weeks
67.03519 -.42023 (67*2π)/184127 weeks
68-.26862 -.67649 (68*2π)/184127 weeks
69-.09887 -.27899 (69*2π)/184127 weeks
70-.18511 -.47513 (70*2π)/184126 weeks
71-.09708 -.20383 (71*2π)/184126 weeks
72-.0328 -.73719 (72*2π)/184126 weeks
73-.35121 -.26015 (73*2π)/184125 weeks
74-.09269 -.21357 (74*2π)/184125 weeks
75.15645 -.14548 (75*2π)/184125 weeks
76.09179 -.50909 (76*2π)/184124 weeks
77-.06935 -.39901 (77*2π)/184124 weeks
78.01804 -.31802 (78*2π)/184124 weeks
79.18412 -.57739 (79*2π)/184123 weeks
80-.26867 -.46746 (80*2π)/184123 weeks
81.12556 -.33867 (81*2π)/184123 weeks
82-.17293 -.48883 (82*2π)/184122 weeks
83.01172 -.35094 (83*2π)/184122 weeks
84-.17987 -.46486 (84*2π)/184122 weeks
85-.01932 -.26418 (85*2π)/184122 weeks
86.03515 -.49528 (86*2π)/184121 weeks
87.08736 -.57388 (87*2π)/184121 weeks
88-.4608 -.62849 (88*2π)/184121 weeks
89-.32217 -.05801 (89*2π)/184121 weeks
90.06474 -.29697 (90*2π)/184120 weeks
91-.03009 -.37936 (91*2π)/184120 weeks
92-.16262 -.4284 (92*2π)/184120 weeks
93-.27316 -.2704 (93*2π)/184120 weeks
94.05634 -.21746 (94*2π)/184120 weeks
95-.298 -.45369 (95*2π)/184119 weeks
96-.10701 -.10945 (96*2π)/184119 weeks
97-.14473 -.33216 (97*2π)/184119 weeks
98-.02518 -.09227 (98*2π)/184119 weeks
99-.08065 -.27294 (99*2π)/184119 weeks
100.09562 -.26899 (100*2π)/184118 weeks
101-.3712 -.21858 (101*2π)/184118 weeks
102.16184 .0076 (102*2π)/184118 weeks
103.04943 -.13351 (103*2π)/184118 weeks
104.29393 -.44162 (104*2π)/184118 weeks
105-.25846 -.32135 (105*2π)/184118 weeks
106.03575 -.12195 (106*2π)/184117 weeks
107.17503 -.21036 (107*2π)/184117 weeks
108.18704 -.51982 (108*2π)/184117 weeks
109-.21753 -.42528 (109*2π)/184117 weeks
110-.10408 -.10918 (110*2π)/184117 weeks
111.2224 -.1846 (111*2π)/184117 weeks
112.08405 -.61401 (112*2π)/184116 weeks
113-.2187 -.44422 (113*2π)/184116 weeks
114-.2438 -.26098 (114*2π)/184116 weeks
115.00589 -.0459 (115*2π)/184116 weeks
116.11202 -.40063 (116*2π)/184116 weeks
117-.15078 -.27414 (117*2π)/184116 weeks
118-.06561 -.23933 (118*2π)/184116 weeks
119.0496 -.22183 (119*2π)/184115 weeks
120-.03694 -.34818 (120*2π)/184115 weeks
121-.08771 -.31079 (121*2π)/184115 weeks
122-.08085 -.22935 (122*2π)/184115 weeks
123-.00627 -.22131 (123*2π)/184115 weeks
124-.01868 -.21236 (124*2π)/184115 weeks
125-.02455 -.31918 (125*2π)/184115 weeks
126.00935 -.15962 (126*2π)/184115 weeks
127-.02647 -.42334 (127*2π)/184114 weeks
128-.03074 -.21575 (128*2π)/184114 weeks
129-.08217 -.32569 (129*2π)/184114 weeks
130-.03901 -.18717 (130*2π)/184114 weeks
131-.03142 -.29731 (131*2π)/184114 weeks
132-.00898 -.33026 (132*2π)/184114 weeks
133-.17108 -.28688 (133*2π)/184114 weeks
134-.059 -.22184 (134*2π)/184114 weeks
135-.07183 -.08123 (135*2π)/184114 weeks
136.1087 -.28542 (136*2π)/184114 weeks
137-.00203 -.2218 (137*2π)/184113 weeks
138.02791 -.44702 (138*2π)/184113 weeks
139-.2125 -.29338 (139*2π)/184113 weeks
140-.05842 -.21948 (140*2π)/184113 weeks
141-.08524 -.22893 (141*2π)/184113 weeks
142.02241 -.2117 (142*2π)/184113 weeks
143-.02441 -.32133 (143*2π)/184113 weeks
144-.13158 -.36721 (144*2π)/184113 weeks
145-.18357 -.2171 (145*2π)/184113 weeks
146-.07988 -.21613 (146*2π)/184113 weeks
147-.09107 -.16465 (147*2π)/184113 weeks
148-.13514 -.20502 (148*2π)/184112 weeks
149.05385 -.14972 (149*2π)/184112 weeks
150-.08906 -.31444 (150*2π)/184112 weeks
151-.1049 -.10242 (151*2π)/184112 weeks
152.04287 -.22879 (152*2π)/184112 weeks
153-.0367 -.31179 (153*2π)/184112 weeks
154-.10589 -.19284 (154*2π)/184112 weeks
155-.02611 -.25272 (155*2π)/184112 weeks
156-.07625 -.28345 (156*2π)/184112 weeks
157-.08788 -.22777 (157*2π)/184112 weeks
158-.11987 -.34077 (158*2π)/184112 weeks
159-.23822 -.13884 (159*2π)/184112 weeks
160-.10744 -.1668 (160*2π)/184112 weeks
161-.17764 -.12537 (161*2π)/184111 weeks
162-.01629 -.02479 (162*2π)/184111 weeks
163-.00626 -.21254 (163*2π)/184111 weeks
164-.01241 -.16848 (164*2π)/184111 weeks
165-.07781 -.24671 (165*2π)/184111 weeks
166-.04549 -.08934 (166*2π)/184111 weeks
167.02029 -.28316 (167*2π)/184111 weeks
168-.12079 -.18243 (168*2π)/184111 weeks
169-.0559 -.23184 (169*2π)/184111 weeks
170-.11861 -.13073 (170*2π)/184111 weeks
171-.00033 -.14924 (171*2π)/184111 weeks
172.0186 -.28069 (172*2π)/184111 weeks
173-.19099 -.16243 (173*2π)/184111 weeks
174.08665 -.15446 (174*2π)/184111 weeks
175-.09303 -.32412 (175*2π)/184111 weeks
176-.10261 -.18403 (176*2π)/184110 weeks
177-.10285 -.22771 (177*2π)/184110 weeks
178-.1105 -.15479 (178*2π)/184110 weeks
179-.03728 -.24915 (179*2π)/184110 weeks
180-.23573 -.12883 (180*2π)/184110 weeks
181.04979 -.10326 (181*2π)/184110 weeks
182-.15039 -.22 (182*2π)/184110 weeks
183-.07457 -.16347 (183*2π)/184110 weeks
184-.1593 -.11785 (184*2π)/184110 weeks
185.00749 -.13976 (185*2π)/184110 weeks
186-.07776 -.21394 (186*2π)/184110 weeks
187-.13156 -.25651 (187*2π)/184110 weeks
188-.21865 -.03833 (188*2π)/184110 weeks
189-.0125 -.10125 (189*2π)/184110 weeks
190-.08339 -.04603 (190*2π)/184110 weeks
191.01396 -.16952 (191*2π)/184110 weeks
192-.12385 -.1574 (192*2π)/184110 weeks
193.02899 -.09148 (193*2π)/184110 weeks
194-.09586 -.19839 (194*2π)/18419 weeks
195-.01757 -.08286 (195*2π)/18419 weeks
196-.07364 -.21432 (196*2π)/18419 weeks
197-.03871 -.1077 (197*2π)/18419 weeks
198-.11413 -.15432 (198*2π)/18419 weeks
199-.01039 -.1345 (199*2π)/18419 weeks
200-.13574 -.18374 (200*2π)/18419 weeks
201.00046 -.0143 (201*2π)/18419 weeks
202-.0517 -.23907 (202*2π)/18419 weeks
203-.03424 -.06626 (203*2π)/18419 weeks
204-.04637 -.21032 (204*2π)/18419 weeks
205-.04073 -.11573 (205*2π)/18419 weeks
206-.131 -.22693 (206*2π)/18419 weeks
207-.0832 .00114 (207*2π)/18419 weeks
208.04671 -.11964 (208*2π)/18419 weeks
209.01738 -.19684 (209*2π)/18419 weeks
210-.08986 -.19768 (210*2π)/18419 weeks
211-.05714 -.14794 (211*2π)/18419 weeks
212-.078 -.14843 (212*2π)/18419 weeks
213-.00759 -.13896 (213*2π)/18419 weeks
214-.16553 -.23215 (214*2π)/18419 weeks
215-.0961 -.0289 (215*2π)/18419 weeks
216-.05626 -.13211 (216*2π)/18419 weeks
217.02301 -.0977 (217*2π)/18418 weeks
218-.10016 -.1986 (218*2π)/18418 weeks
219-.06271 -.03621 (219*2π)/18418 weeks
220.01708 -.11281 (220*2π)/18418 weeks
221-.00217 -.22568 (221*2π)/18418 weeks
222-.10887 -.15335 (222*2π)/18418 weeks
223-.01653 -.16163 (223*2π)/18418 weeks
224-.10327 -.1901 (224*2π)/18418 weeks
225-.09759 -.17502 (225*2π)/18418 weeks
226-.14975 -.07852 (226*2π)/18418 weeks
227-.00395 -.09571 (227*2π)/18418 weeks
228-.07888 -.09437 (228*2π)/18418 weeks
229-.04909 -.18166 (229*2π)/18418 weeks
230-.07981 -.05792 (230*2π)/18418 weeks
231-.0119 -.18336 (231*2π)/18418 weeks
232-.06492 -.0746 (232*2π)/18418 weeks
233-.08672 -.20673 (233*2π)/18418 weeks
234-.09959 -.0071 (234*2π)/18418 weeks
235.05229 -.13647 (235*2π)/18418 weeks
236-.03227 -.16475 (236*2π)/18418 weeks
237-.09695 -.21021 (237*2π)/18418 weeks
238-.16115 -.05555 (238*2π)/18418 weeks
239.08194 -.03745 (239*2π)/18418 weeks
240-.05551 -.28666 (240*2π)/18418 weeks
241-.12366 -.13336 (241*2π)/18418 weeks
242-.09387 -.12082 (242*2π)/18418 weeks
243-.07474 -.09946 (243*2π)/18418 weeks
244-.06459 -.13527 (244*2π)/18418 weeks
245-.11409 -.13386 (245*2π)/18418 weeks
246-.1142 -.07114 (246*2π)/18417 weeks
247-.04914 -.0214 (247*2π)/18417 weeks
248.01977 -.11746 (248*2π)/18417 weeks
249-.04944 -.15784 (249*2π)/18417 weeks
250-.09357 -.10492 (250*2π)/18417 weeks
251-.09088 -.05287 (251*2π)/18417 weeks
252-.05191 -.09717 (252*2π)/18417 weeks
253.0057 -.03977 (253*2π)/18417 weeks
254.03494 -.21675 (254*2π)/18417 weeks
255-.09427 -.13124 (255*2π)/18417 weeks
256-.06023 -.16425 (256*2π)/18417 weeks
257-.12728 -.12067 (257*2π)/18417 weeks
258-.08578 -.04935 (258*2π)/18417 weeks
259-.07966 -.09342 (259*2π)/18417 weeks
260-.00026 -.03595 (260*2π)/18417 weeks
261.02701 -.20067 (261*2π)/18417 weeks
262-.11498 -.18425 (262*2π)/18417 weeks
263-.14274 -.06206 (263*2π)/18417 weeks
264-.04699 .00231 (264*2π)/18417 weeks
265.0521 -.11897 (265*2π)/18417 weeks
266-.04847 -.22079 (266*2π)/18417 weeks
267-.13112 -.09789 (267*2π)/18417 weeks
268-.03712 -.0817 (268*2π)/18417 weeks
269-.02945 -.12772 (269*2π)/18417 weeks
270-.10864 -.17825 (270*2π)/18417 weeks
271-.10809 -.05435 (271*2π)/18417 weeks
272-.06933 -.06494 (272*2π)/18417 weeks
273.00263 -.07318 (273*2π)/18417 weeks
274-.05296 -.20813 (274*2π)/18417 weeks
275-.12386 -.05934 (275*2π)/18417 weeks
276-.05872 -.12172 (276*2π)/18417 weeks
277-.10304 -.0471 (277*2π)/18417 weeks
278-.02392 -.07941 (278*2π)/18417 weeks
279-.07292 -.09856 (279*2π)/18417 weeks
280-.028 -.0405 (280*2π)/18417 weeks
281-.02082 -.12592 (281*2π)/18417 weeks
282-.04985 -.13397 (282*2π)/18417 weeks
283-.10625 -.16512 (283*2π)/18417 weeks
284-.13848 -.03854 (284*2π)/18416 weeks
285-.01373 -.01154 (285*2π)/18416 weeks
286.03512 -.12278 (286*2π)/18416 weeks
287-.09764 -.16746 (287*2π)/18416 weeks
288-.13105 -.06787 (288*2π)/18416 weeks
289-.04897 -.04668 (289*2π)/18416 weeks
290-.06031 -.09625 (290*2π)/18416 weeks
291-.05744 -.15274 (291*2π)/18416 weeks
292-.16505 -.01406 (292*2π)/18416 weeks
293-.00705 .00582 (293*2π)/18416 weeks
294.02778 -.05411 (294*2π)/18416 weeks
295-.05543 -.16249 (295*2π)/18416 weeks
296-.1043 -.0266 (296*2π)/18416 weeks
297.01563 -.05474 (297*2π)/18416 weeks
298-.00848 -.1062 (298*2π)/18416 weeks
299-.0147 -.0958 (299*2π)/18416 weeks
300-.07797 -.12199 (300*2π)/18416 weeks
301-.01074 -.04829 (301*2π)/18416 weeks
302-.02182 -.15095 (302*2π)/18416 weeks
303-.05167 -.09773 (303*2π)/18416 weeks
304-.06876 -.09106 (304*2π)/18416 weeks
305.00696 -.08372 (305*2π)/18416 weeks
306-.05814 -.14222 (306*2π)/18416 weeks
307-.05872 -.11025 (307*2π)/18416 weeks
308-.04953 -.09128 (308*2π)/18416 weeks
309-.05566 -.11746 (309*2π)/18416 weeks
310-.06672 -.07755 (310*2π)/18416 weeks
311-.04817 -.12654 (311*2π)/18416 weeks
312-.081 -.02727 (312*2π)/18416 weeks
313.01499 -.14684 (313*2π)/18416 weeks
314-.0896 -.13375 (314*2π)/18416 weeks
315-.08917 -.10744 (315*2π)/18416 weeks
316-.06495 -.04195 (316*2π)/18416 weeks
317.00801 -.1065 (317*2π)/18416 weeks
318-.09176 -.11315 (318*2π)/18416 weeks
319-.02925 -.12432 (319*2π)/18416 weeks
320-.09904 -.14848 (320*2π)/18416 weeks
321-.09119 -.09783 (321*2π)/18416 weeks
322-.14133 -.06464 (322*2π)/18416 weeks
323-.01695 -.05969 (323*2π)/18416 weeks
324-.09653 -.10595 (324*2π)/18416 weeks
325-.07931 -.04087 (325*2π)/18416 weeks
326-.06405 -.08228 (326*2π)/18416 weeks
327-.04328 -.05146 (327*2π)/18416 weeks
328-.0479 -.13793 (328*2π)/18416 weeks
329-.15808 -.03586 (329*2π)/18416 weeks
330.00817 -.02477 (330*2π)/18416 weeks
331-.06656 -.11819 (331*2π)/18416 weeks
332-.05495 -.0844 (332*2π)/18416 weeks
333-.09584 -.08072 (333*2π)/18416 weeks
334-.06925 -.01614 (334*2π)/18416 weeks
335-.01674 -.05987 (335*2π)/18415 weeks
336-.08643 -.07934 (336*2π)/18415 weeks
337-.02588 -.02636 (337*2π)/18415 weeks
338-.04339 -.11146 (338*2π)/18415 weeks
339-.02598 -.03748 (339*2π)/18415 weeks
340.01686 -.11309 (340*2π)/18415 weeks
341-.10053 -.11515 (341*2π)/18415 weeks
342-.03036 -.05572 (342*2π)/18415 weeks
343-.07932 -.14012 (343*2π)/18415 weeks
344-.08827 -.01849 (344*2π)/18415 weeks
345.01787 -.14576 (345*2π)/18415 weeks
346-.14753 -.07295 (346*2π)/18415 weeks
347-.03202 -.05611 (347*2π)/18415 weeks
348-.07154 -.03179 (348*2π)/18415 weeks
349.00958 -.11168 (349*2π)/18415 weeks
350-.11435 -.09146 (350*2π)/18415 weeks
351-.03982 -.05984 (351*2π)/18415 weeks
352-.00137 -.05539 (352*2π)/18415 weeks
353-.05497 -.20194 (353*2π)/18415 weeks
354-.15335 -.07101 (354*2π)/18415 weeks
355-.10503 -.0412 (355*2π)/18415 weeks
356-.05798 -.01863 (356*2π)/18415 weeks
357-.05658 -.11828 (357*2π)/18415 weeks
358-.13418 .00182 (358*2π)/18415 weeks
359-.01148 -.01516 (359*2π)/18415 weeks
360-.02975 -.06084 (360*2π)/18415 weeks
361-.04039 -.08555 (361*2π)/18415 weeks
362-.11337 -.06265 (362*2π)/18415 weeks
363-.06016 .00266 (363*2π)/18415 weeks
364.00781 -.03492 (364*2π)/18415 weeks
365-.00915 -.04586 (365*2π)/18415 weeks
366-.03573 -.12464 (366*2π)/18415 weeks
367-.05931 -.04326 (367*2π)/18415 weeks
368-.02399 -.09296 (368*2π)/18415 weeks
369-.05416 -.04068 (369*2π)/18415 weeks
370-.01946 -.12565 (370*2π)/18415 weeks
371-.06697 -.0616 (371*2π)/18415 weeks
372-.08244 -.10404 (372*2π)/18415 weeks
373-.0424 -.00672 (373*2π)/18415 weeks
374-.00394 -.11309 (374*2π)/18415 weeks
375-.06744 -.08115 (375*2π)/18415 weeks
376-.07905 -.08799 (376*2π)/18415 weeks
377-.05747 -.01069 (377*2π)/18415 weeks
378-.01319 -.10755 (378*2π)/18415 weeks
379-.08702 -.08556 (379*2π)/18415 weeks
380-.07311 -.02549 (380*2π)/18415 weeks
381.03159 -.0406 (381*2π)/18415 weeks
382-.05299 -.16343 (382*2π)/18415 weeks
383-.09747 -.07335 (383*2π)/18415 weeks
384-.12586 -.06147 (384*2π)/18415 weeks
385-.02467 .0016 (385*2π)/18415 weeks
386-.04267 -.08943 (386*2π)/18415 weeks
387-.04309 -.0712 (387*2π)/18415 weeks
388-.08212 -.07127 (388*2π)/18415 weeks
389-.06382 -.01854 (389*2π)/18415 weeks
390-.02566 -.02131 (390*2π)/18415 weeks
391.00414 -.06276 (391*2π)/18415 weeks
392-.05448 -.06794 (392*2π)/18415 weeks
393-.00719 -.06895 (393*2π)/18415 weeks
394-.03619 -.07897 (394*2π)/18415 weeks
395-.02406 -.11338 (395*2π)/18415 weeks
396-.09142 -.06497 (396*2π)/18415 weeks
397-.01683 -.05544 (397*2π)/18415 weeks
398.00933 -.06173 (398*2π)/18415 weeks
399-.03926 -.17698 (399*2π)/18415 weeks
400-.10279 -.07525 (400*2π)/18415 weeks
401-.06099 -.11316 (401*2π)/18415 weeks
402-.10575 -.06177 (402*2π)/18415 weeks
403-.02731 -.06674