Back to list of Stocks    See Also: Seasonal Analysis of FIDSXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FIDSX (Fidelity Select Financial Servi)


FIDSX (Fidelity Select Financial Servi) appears to have interesting cyclic behaviour every 153 weeks (4.718*sine), 166 weeks (2.7417*cosine), and 166 weeks (1.6436*sine).

FIDSX (Fidelity Select Financial Servi) has an average price of 41.76 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/10/1981 to 1/9/2017 for FIDSX (Fidelity Select Financial Servi), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
041.761   0 
1-6.38916 -35.32969 (1*2π)/18311,831 weeks
24.11679 -3.20698 (2*2π)/1831916 weeks
35.21165 -7.45696 (3*2π)/1831610 weeks
43.72738 -12.77513 (4*2π)/1831458 weeks
5-5.15354 -7.52516 (5*2π)/1831366 weeks
6.37592 -2.48517 (6*2π)/1831305 weeks
71.48177 -4.09612 (7*2π)/1831262 weeks
8-1.62469 -5.44616 (8*2π)/1831229 weeks
9-1.67253 -1.79703 (9*2π)/1831203 weeks
10-.4471 .20349 (10*2π)/1831183 weeks
112.74171 -1.64362 (11*2π)/1831166 weeks
12-.36021 -4.71798 (12*2π)/1831153 weeks
13-1.08139 -1.31073 (13*2π)/1831141 weeks
14.13336 -1.26577 (14*2π)/1831131 weeks
15.75999 -.97853 (15*2π)/1831122 weeks
16.62502 -2.01049 (16*2π)/1831114 weeks
17-.30115 -1.99784 (17*2π)/1831108 weeks
18.20385 -.7964 (18*2π)/1831102 weeks
19.69303 -1.03986 (19*2π)/183196 weeks
20.64138 -1.86093 (20*2π)/183192 weeks
21-.02757 -1.38789 (21*2π)/183187 weeks
22.39861 -1.56359 (22*2π)/183183 weeks
23-.25932 -.7616 (23*2π)/183180 weeks
241.11617 -1.08231 (24*2π)/183176 weeks
25.09817 -1.85998 (25*2π)/183173 weeks
26.31879 -1.49556 (26*2π)/183170 weeks
27-1.0112 -1.32762 (27*2π)/183168 weeks
28.30335 -.17638 (28*2π)/183165 weeks
29.38662 -1.11099 (29*2π)/183163 weeks
30.3608 -1.581 (30*2π)/183161 weeks
31-.3686 -1.04222 (31*2π)/183159 weeks
32.16642 -.95474 (32*2π)/183157 weeks
33-.10613 -.97132 (33*2π)/183155 weeks
34-.16709 -.799 (34*2π)/183154 weeks
35-.13028 -.4095 (35*2π)/183152 weeks
36.20883 -.96873 (36*2π)/183151 weeks
37.20446 -.62818 (37*2π)/183149 weeks
38.36302 -1.19686 (38*2π)/183148 weeks
39-.52782 -1.0771 (39*2π)/183147 weeks
40-.44964 -.43673 (40*2π)/183146 weeks
41.32212 -.2897 (41*2π)/183145 weeks
42.21439 -.7033 (42*2π)/183144 weeks
43.18886 -.74879 (43*2π)/183143 weeks
44-.28615 -.94865 (44*2π)/183142 weeks
45.2075 -.36806 (45*2π)/183141 weeks
46-.15927 -.75052 (46*2π)/183140 weeks
47.32943 -.57052 (47*2π)/183139 weeks
48-.26546 -.71626 (48*2π)/183138 weeks
49.27994 -.50833 (49*2π)/183137 weeks
50-.0538 -.71317 (50*2π)/183137 weeks
51.02601 -.38901 (51*2π)/183136 weeks
52.14058 -.66562 (52*2π)/183135 weeks
53-.1792 -.89779 (53*2π)/183135 weeks
54-.12956 -.19434 (54*2π)/183134 weeks
55.09637 -.59989 (55*2π)/183133 weeks
56-.018 -.36912 (56*2π)/183133 weeks
57.22836 -.4709 (57*2π)/183132 weeks
58.11323 -.61897 (58*2π)/183132 weeks
59.02688 -.61466 (59*2π)/183131 weeks
60-.08776 -.67706 (60*2π)/183131 weeks
61.01436 -.34859 (61*2π)/183130 weeks
62.15286 -.57438 (62*2π)/183130 weeks
63-.03393 -.46322 (63*2π)/183129 weeks
64.11181 -.42888 (64*2π)/183129 weeks
65.08866 -.66284 (65*2π)/183128 weeks
66-.01869 -.66866 (66*2π)/183128 weeks
67-.0128 -.33348 (67*2π)/183127 weeks
68.19146 -.7099 (68*2π)/183127 weeks
69-.07775 -.46351 (69*2π)/183127 weeks
70.04712 -.61171 (70*2π)/183126 weeks
71-.2914 -.43079 (71*2π)/183126 weeks
72.31083 -.47405 (72*2π)/183125 weeks
73-.07252 -.7373 (73*2π)/183125 weeks
74-.16491 -.66146 (74*2π)/183125 weeks
75-.33328 -.32963 (75*2π)/183124 weeks
76-.03415 -.32247 (76*2π)/183124 weeks
77-.08755 -.44965 (77*2π)/183124 weeks
78-.24477 -.39086 (78*2π)/183123 weeks
79.06852 -.12178 (79*2π)/183123 weeks
80-.00368 -.5647 (80*2π)/183123 weeks
81-.08535 -.18358 (81*2π)/183123 weeks
82.01949 -.44515 (82*2π)/183122 weeks
83-.07325 -.24963 (83*2π)/183122 weeks
84.03813 -.46272 (84*2π)/183122 weeks
85-.19967 -.35633 (85*2π)/183122 weeks
86-.07977 -.27206 (86*2π)/183121 weeks
87.07786 .04289 (87*2π)/183121 weeks
88.4038 -.45822 (88*2π)/183121 weeks
89-.10358 -.64014 (89*2π)/183121 weeks
90-.0743 -.33114 (90*2π)/183120 weeks
91-.02198 -.24963 (91*2π)/183120 weeks
92.12112 -.29305 (92*2π)/183120 weeks
93.05598 -.54378 (93*2π)/183120 weeks
94-.11226 -.18788 (94*2π)/183119 weeks
95.21892 -.46953 (95*2π)/183119 weeks
96-.07777 -.41402 (96*2π)/183119 weeks
97.13944 -.47863 (97*2π)/183119 weeks
98-.10923 -.40969 (98*2π)/183119 weeks
99-.01662 -.48342 (99*2π)/183118 weeks
100-.00478 -.14621 (100*2π)/183118 weeks
101.16171 -.70197 (101*2π)/183118 weeks
102-.16396 -.44727 (102*2π)/183118 weeks
103-.2978 -.56497 (103*2π)/183118 weeks
104-.1296 -.03885 (104*2π)/183118 weeks
105.06342 -.46833 (105*2π)/183117 weeks
106-.13724 -.49695 (106*2π)/183117 weeks
107-.33797 -.39951 (107*2π)/183117 weeks
108-.15848 -.03591 (108*2π)/183117 weeks
109.12009 -.26766 (109*2π)/183117 weeks
110-.06406 -.5254 (110*2π)/183117 weeks
111-.42037 -.32448 (111*2π)/183116 weeks
112-.13524 -.01955 (112*2π)/183116 weeks
113.05455 -.13001 (113*2π)/183116 weeks
114.17646 -.3511 (114*2π)/183116 weeks
115-.18436 -.45158 (115*2π)/183116 weeks
116-.08544 -.12863 (116*2π)/183116 weeks
117-.0183 -.28343 (117*2π)/183116 weeks
118-.01256 -.34661 (118*2π)/183116 weeks
119-.16005 -.27886 (119*2π)/183115 weeks
120-.08555 -.22376 (120*2π)/183115 weeks
121-.00953 -.2299 (121*2π)/183115 weeks
122-.00476 -.29856 (122*2π)/183115 weeks
123-.04191 -.27424 (123*2π)/183115 weeks
124-.11794 -.31088 (124*2π)/183115 weeks
125.00758 -.25172 (125*2π)/183115 weeks
126-.2175 -.34185 (126*2π)/183115 weeks
127-.0149 -.20056 (127*2π)/183114 weeks
128-.13723 -.2449 (128*2π)/183114 weeks
129-.00226 -.21385 (129*2π)/183114 weeks
130-.11159 -.2901 (130*2π)/183114 weeks
131-.10418 -.28215 (131*2π)/183114 weeks
132-.13193 -.13972 (132*2π)/183114 weeks
133.00961 -.21968 (133*2π)/183114 weeks
134.05054 -.16525 (134*2π)/183114 weeks
135-.03014 -.41959 (135*2π)/183114 weeks
136-.08452 -.24718 (136*2π)/183113 weeks
137-.20268 -.37884 (137*2π)/183113 weeks
138-.19236 -.08838 (138*2π)/183113 weeks
139-.0157 -.19812 (139*2π)/183113 weeks
140-.06526 -.2002 (140*2π)/183113 weeks
141-.00291 -.2601 (141*2π)/183113 weeks
142-.13406 -.28162 (142*2π)/183113 weeks
143-.20224 -.21623 (143*2π)/183113 weeks
144-.10572 -.08939 (144*2π)/183113 weeks
145-.02687 -.18062 (145*2π)/183113 weeks
146-.02671 -.14078 (146*2π)/183113 weeks
147-.07867 -.17006 (147*2π)/183112 weeks
148.0806 -.23392 (148*2π)/183112 weeks
149-.1422 -.2618 (149*2π)/183112 weeks
150-.01736 -.09324 (150*2π)/183112 weeks
151.01143 -.29643 (151*2π)/183112 weeks
152-.10785 -.28557 (152*2π)/183112 weeks
153-.09213 -.14916 (153*2π)/183112 weeks
154-.05541 -.25071 (154*2π)/183112 weeks
155-.11566 -.23663 (155*2π)/183112 weeks
156-.0977 -.1803 (156*2π)/183112 weeks
157-.16651 -.25107 (157*2π)/183112 weeks
158-.16124 -.02479 (158*2π)/183112 weeks
159-.04745 -.1305 (159*2π)/183112 weeks
160-.09204 -.07341 (160*2π)/183111 weeks
161.08364 -.06886 (161*2π)/183111 weeks
162-.00019 -.24834 (162*2π)/183111 weeks
163.00078 -.18955 (163*2π)/183111 weeks
164-.08338 -.23321 (164*2π)/183111 weeks
165-.00074 -.10138 (165*2π)/183111 weeks
166-.00783 -.30385 (166*2π)/183111 weeks
167-.11204 -.15611 (167*2π)/183111 weeks
168-.05477 -.22191 (168*2π)/183111 weeks
169-.08657 -.11136 (169*2π)/183111 weeks
170.02162 -.16828 (170*2π)/183111 weeks
171-.00054 -.29079 (171*2π)/183111 weeks
172-.1734 -.12978 (172*2π)/183111 weeks
173.09993 -.18119 (173*2π)/183111 weeks
174-.11383 -.31147 (174*2π)/183111 weeks
175-.09503 -.16665 (175*2π)/183110 weeks
176-.09836 -.2126 (176*2π)/183110 weeks
177-.09564 -.14143 (177*2π)/183110 weeks
178-.03328 -.24231 (178*2π)/183110 weeks
179-.21872 -.10734 (179*2π)/183110 weeks
180.0678 -.104 (180*2π)/183110 weeks
181-.14061 -.21224 (181*2π)/183110 weeks
182-.06163 -.15809 (182*2π)/183110 weeks
183-.14687 -.11319 (183*2π)/183110 weeks
184.01988 -.13433 (184*2π)/183110 weeks
185-.06248 -.21073 (185*2π)/183110 weeks
186-.1132 -.26041 (186*2π)/183110 weeks
187-.21818 -.0504 (187*2π)/183110 weeks
188-.01127 -.09607 (188*2π)/183110 weeks
189-.08785 -.04365 (189*2π)/183110 weeks
190.02399 -.1536 (190*2π)/183110 weeks
191-.11515 -.16342 (191*2π)/183110 weeks
192.02653 -.07312 (192*2π)/183110 weeks
193-.0773 -.19938 (193*2π)/18319 weeks
194-.0221 -.07063 (194*2π)/18319 weeks
195-.04978 -.21092 (195*2π)/18319 weeks
196-.03613 -.10233 (196*2π)/18319 weeks
197-.10378 -.16322 (197*2π)/18319 weeks
198-.0068 -.11868 (198*2π)/18319 weeks
199-.11645 -.20766 (199*2π)/18319 weeks
200-.04043 .00255 (200*2π)/18319 weeks
201-.01828 -.22336 (201*2π)/18319 weeks
202-.05352 -.05624 (202*2π)/18319 weeks
203-.0162 -.1924 (203*2π)/18319 weeks
204-.03578 -.10328 (204*2π)/18319 weeks
205-.08176 -.25532 (205*2π)/18319 weeks
206-.14579 -.03067 (206*2π)/18319 weeks
207.01359 -.05938 (207*2π)/18319 weeks
208.04609 -.13261 (208*2π)/18319 weeks
209-.04003 -.19211 (209*2π)/18319 weeks
210-.03607 -.14264 (210*2π)/18319 weeks
211-.05899 -.15259 (211*2π)/18319 weeks
212.00885 -.09859 (212*2π)/18319 weeks
213-.07435 -.27872 (213*2π)/18319 weeks
214-.13973 -.08489 (214*2π)/18319 weeks
215-.07291 -.13861 (215*2π)/18319 weeks
216-.01015 -.05013 (216*2π)/18318 weeks
217-.04361 -.20891 (217*2π)/18318 weeks
218-.12338 -.0655 (218*2π)/18318 weeks
219-.03193 -.04516 (219*2π)/18318 weeks
220.0522 -.13715 (220*2π)/18318 weeks
221-.06628 -.16152 (221*2π)/18318 weeks
222.00962 -.10849 (222*2π)/18318 weeks
223-.02351 -.18548 (223*2π)/18318 weeks
224-.01608 -.19746 (224*2π)/18318 weeks
225-.14066 -.18121 (225*2π)/18318 weeks
226-.03863 -.0861 (226*2π)/18318 weeks
227-.09616 -.10931 (227*2π)/18318 weeks
228-.00616 -.16367 (228*2π)/18318 weeks
229-.1226 -.09952 (229*2π)/18318 weeks
230.01635 -.13186 (230*2π)/18318 weeks
231-.08617 -.08127 (231*2π)/18318 weeks
232.00597 -.20504 (232*2π)/18318 weeks
233-.17937 -.10989 (233*2π)/18318 weeks
234-.01348 -.03754 (234*2π)/18318 weeks
235-.00599 -.08111 (235*2π)/18318 weeks
236.03284 -.18303 (236*2π)/18318 weeks
237-.15277 -.20561 (237*2π)/18318 weeks
238-.08971 .05337 (238*2π)/18318 weeks
239.08388 -.14718 (239*2π)/18318 weeks
240-.03003 -.16431 (240*2π)/18318 weeks
241-.03988 -.15484 (241*2π)/18318 weeks
242-.06023 -.12652 (242*2π)/18318 weeks
243-.02073 -.12329 (243*2π)/18318 weeks
244-.02288 -.17953 (244*2π)/18318 weeks
245-.08062 -.19122 (245*2π)/18317 weeks
246-.14736 -.11871 (246*2π)/18317 weeks
247-.05393 -.05633 (247*2π)/18317 weeks
248-.00378 -.10705 (248*2π)/18317 weeks
249-.0391 -.14301 (249*2π)/18317 weeks
250-.11212 -.14231 (250*2π)/18317 weeks
251-.08297 -.14832 (251*2π)/18317 weeks
252-.16241 -.05416 (252*2π)/18317 weeks
253.0277 -.02814 (253*2π)/18317 weeks
254-.04552 -.10312 (254*2π)/18317 weeks
255.01363 -.09131 (255*2π)/18317 weeks
256-.01086 -.16511 (256*2π)/18317 weeks
257-.0864 -.13647 (257*2π)/18317 weeks
258-.07046 -.17171 (258*2π)/18317 weeks
259-.16173 -.07688 (259*2π)/18317 weeks
260-.00306 -.01063 (260*2π)/18317 weeks
261.04926 -.11897 (261*2π)/18317 weeks
262-.03812 -.19791 (262*2π)/18317 weeks
263-.1669 -.14949 (263*2π)/18317 weeks
264-.11038 -.01477 (264*2π)/18317 weeks
265.03607 -.05454 (265*2π)/18317 weeks
266-.03827 -.15639 (266*2π)/18317 weeks
267-.07715 -.09751 (267*2π)/18317 weeks
268-.05666 -.04526 (268*2π)/18317 weeks
269.04264 -.11383 (269*2π)/18317 weeks
270-.04409 -.14711 (270*2π)/18317 weeks
271-.07228 -.15538 (271*2π)/18317 weeks
272-.12566 -.06096 (272*2π)/18317 weeks
273.04371 -.05528 (273*2π)/18317 weeks
274-.05757 -.13886 (274*2π)/18317 weeks
275.00526 -.09598 (275*2π)/18317 weeks
276-.05918 -.16313 (276*2π)/18317 weeks
277-.06269 -.09525 (277*2π)/18317 weeks
278-.02695 -.13676 (278*2π)/18317 weeks
279-.11528 -.11384 (279*2π)/18317 weeks
280-.07794 -.07221 (280*2π)/18317 weeks
281-.06418 -.04954 (281*2π)/18317 weeks
282.04471 -.07159 (282*2π)/18316 weeks
283-.00442 -.1905 (283*2π)/18316 weeks
284-.1187 -.15729 (284*2π)/18316 weeks
285-.10537 -.01868 (285*2π)/18316 weeks
286.00792 -.04631 (286*2π)/18316 weeks
287-.00796 -.13964 (287*2π)/18316 weeks
288-.07212 -.11259 (288*2π)/18316 weeks
289-.07296 -.10816 (289*2π)/18316 weeks
290.03828 -.02571 (290*2π)/18316 weeks
291.02245 -.2051 (291*2π)/18316 weeks
292-.07304 -.17784 (292*2π)/18316 weeks
293-.14394 -.09791 (293*2π)/18316 weeks
294-.00146 -.05881 (294*2π)/18316 weeks
295-.03807 -.19038 (295*2π)/18316 weeks
296-.0977 -.13637 (296*2π)/18316 weeks
297-.0765 -.11071 (297*2π)/18316 weeks
298-.10188 -.0774 (298*2π)/18316 weeks
299-.01944 -.12269 (299*2π)/18316 weeks
300-.12352 -.13006 (300*2π)/18316 weeks
301-.06186 -.07306 (301*2π)/18316 weeks
302-.06634 -.08134 (302*2π)/18316 weeks
303-.04392 -.13641 (303*2π)/18316 weeks
304-.121 -.08675 (304*2π)/18316 weeks
305-.06713 -.07773 (305*2π)/18316 weeks
306-.05442 -.08302 (306*2π)/18316 weeks
307-.07895 -.08951 (307*2π)/18316 weeks
308-.05082 -.06664 (308*2π)/18316 weeks
309-.07773 -.10666 (309*2π)/18316 weeks
310-.02519 -.04215 (310*2π)/18316 weeks
311-.08558 -.17702 (311*2π)/18316 weeks
312-.11324 -.05284 (312*2π)/18316 weeks
313-.06634 -.05893 (313*2π)/18316 weeks
314-.01458 -.06116 (314*2π)/18316 weeks
315-.04895 -.14553 (315*2π)/18316 weeks
316-.11224 -.05973 (316*2π)/18316 weeks
317-.06945 -.1123 (317*2π)/18316 weeks
318-.12074 -.06167 (318*2π)/18316 weeks
319-.0603 -.03867 (319*2π)/18316 weeks
320-.06556 -.00888 (320*2π)/18316 weeks
321.00886 -.10153 (321*2π)/18316 weeks
322-.08869 -.06443 (322*2π)/18316 weeks
323-.02361 -.04058 (323*2π)/18316 weeks
324-.04747 -.08803 (324*2π)/18316 weeks
325-.02173 -.07532 (325*2π)/18316 weeks
326-.08268 -.11909 (326*2π)/18316 weeks
327-.07888 .01822 (327*2π)/18316 weeks
328.04191 -.1003 (328*2π)/18316 weeks
329-.09062 -.11163 (329*2π)/18316 weeks
330-.04793 -.07907 (330*2π)/18316 weeks
331-.07181 -.05407 (331*2π)/18316 weeks
332-.01168 -.03156 (332*2π)/18316 weeks
333-.00914 -.10102 (333*2π)/18315 weeks
334-.07545 -.07381 (334*2π)/18315 weeks
335.00331 -.06772 (335*2π)/18315 weeks
336-.05974 -.12782 (336*2π)/18315 weeks
337-.00881 -.06968 (337*2π)/18315 weeks
338-.02297 -.15075 (338*2π)/18315 weeks
339-.11958 -.08634 (339*2π)/18315 weeks
340-.02454 -.07081 (340*2π)/18315 weeks
341-.10477 -.12093 (341*2π)/18315 weeks
342-.05341 -.01431 (342*2π)/18315 weeks
343-.01739 -.1702 (343*2π)/18315 weeks
344-.13631 -.0301 (344*2π)/18315 weeks
345-.0144 -.06667 (345*2π)/18315 weeks
346-.05062 -.03795 (346*2π)/18315 weeks
347-.00779 -.13756 (347*2π)/18315 weeks
348-.11644 -.07136 (348*2π)/18315 weeks
349-.02841 -.06817 (349*2π)/18315 weeks
350-.00262 -.07933 (350*2π)/18315 weeks
351-.09747 -.19374 (351*2π)/18315 weeks
352-.14787 -.03375 (352*2π)/18315 weeks
353-.08524 -.02613 (353*2π)/18315 weeks
354-.03783 -.02194 (354*2π)/18315 weeks
355-.06036 -.11664 (355*2π)/18315 weeks
356-.11044 .01597 (356*2π)/18315 weeks
357.00703 -.02888 (357*2π)/18315 weeks
358-.02445 -.07097 (358*2π)/18315 weeks
359-.04017 -.09069 (359*2π)/18315 weeks
360-.10775 -.05779 (360*2π)/18315 weeks
361-.04621 -.0005 (361*2π)/18315 weeks
362.01551 -.04505 (362*2π)/18315 weeks
363-.00513 -.05397 (363*2π)/18315 weeks
364-.03553 -.12961 (364*2π)/18315 weeks
365-.05618 -.04635 (365*2π)/18315 weeks
366-.02131 -.09634 (366*2π)/18315 weeks
367-.05194 -.04331 (367*2π)/18315 weeks
368-.01465 -.12744 (368*2π)/18315 weeks
369-.06394 -.06523 (369*2π)/18315 weeks
370-.07797 -.10968 (370*2π)/18315 weeks
371-.04653 -.00813 (371*2π)/18315 weeks
372.00363 -.10883 (372*2π)/18315 weeks
373-.06073 -.08565 (373*2π)/18315 weeks
374-.07328 -.09628 (374*2π)/18315 weeks
375-.06581 -.01395 (375*2π)/18315 weeks
376-.00392 -.10015 (376*2π)/18315 weeks
377-.07855 -.09661 (377*2π)/18315 weeks
378-.08379 -.03458 (378*2π)/18315 weeks
379.02482 -.01693 (379*2π)/18315 weeks
380-.01866 -.1585 (380*2π)/18315 weeks
381-.08295 -.09262 (381*2π)/18315 weeks
382-.12463 -.09305 (382*2π)/18315 weeks
383-.05108 .00215 (383*2π)/18315 weeks
384-.03745 -.08369 (384*2π)/18315 weeks
385-.03833 -.07102 (385*2π)/18315 weeks
386-.0761 -.08912 (386*2π)/18315 weeks
387-.0855 -.03494 (387*2π)/18315 weeks
388-.05542 -.01437 (388*2π)/18315 weeks
389-.00595 -.03317 (389*2π)/18315 weeks
390-.05578 -.06062 (390*2π)/18315 weeks
391-.0124 -.04115 (391*2π)/18315 weeks
392-.0305 -.05756 (392*2π)/18315 weeks
393.0039 -.08699 (393*2π)/18315 weeks
394-.08148 -.08259 (394*2π)/18315 weeks
395-.03178 -.03664 (395*2π)/18315 weeks
396.00093 -.00662 (396*2π)/18315 weeks
397.03826 -.13202 (397*2π)/18315 weeks
398-.06449 -.09387 (398*2π)/18315 weeks
399-.01273 -.10911 (399*2π)/18315 weeks
400-.08248 -.09794 (400*2π)/18315 weeks
401-.02056 -.04859 (401*2π)/18315 weeks
402.00676 -.11355 (402*2π)/18315 weeks
403-.07826 -.15547 (403*2π)/18315 weeks
404-.12306 -.07796 (404*2π)/18315 weeks
405-.09113 -.01123 (405*2π)/18315 weeks
406.01658 -.08648 (406*2π)/18315 weeks
407-.11238 -.10896 (407*2π)/18314 weeks
408-.07228 -.052 (408*2π)/18314 weeks
409-.0708 -.02085 (409*2π)/18314 weeks
410.02642 -.04501 (410*2π)/18314 weeks
411-.03628 -.13181 (411*2π)/18314 weeks
412-.09949 -.12932 (412*2π)/18314 weeks
413-.11267