Back to list of Stocks    See Also: Seasonal Analysis of FDZGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FDZ

FDZ appears to have interesting cyclic behaviour every 6 weeks (.0064*cosine), 7 weeks (.0054*sine), and 5 weeks (.0051*cosine).

FDZ has an average price of .17 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Fourier Analysis

Using data from 6/25/2008 to 9/24/2012 for FDZ, this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.16648   0
1-.02683 -.07991 (1*2π)/7777 weeks
2.02268 -.0195 (2*2π)/7739 weeks
3-.0087 -.01118 (3*2π)/7726 weeks
4.00984 -.0187 (4*2π)/7719 weeks
5.00129 .00135 (5*2π)/7715 weeks
6-.00432 -.01558 (6*2π)/7713 weeks
7.01168 -.00732 (7*2π)/7711 weeks
8-.00111 -.00061 (8*2π)/7710 weeks
9.00272 -.0098 (9*2π)/779 weeks
10.00515 -.00218 (10*2π)/778 weeks
11.0017 -.00538 (11*2π)/777 weeks
12.00641 -.00234 (12*2π)/776 weeks
13.00052 -.00085 (13*2π)/776 weeks
14.00398 -.00453 (14*2π)/776 weeks
15.00285 .00109 (15*2π)/775 weeks
16-.0003 -.00394 (16*2π)/775 weeks
17.00514 -.00244 (17*2π)/775 weeks
18.00072 -.00039 (18*2π)/774 weeks
19.00337 -.0041 (19*2π)/774 weeks
20.00364 .00088 (20*2π)/774 weeks
21.00041 -.00242 (21*2π)/774 weeks
22.00492 -.0015 (22*2π)/774 weeks
23.00075 .00104 (23*2π)/773 weeks
24.00175 -.00329 (24*2π)/773 weeks
25.00334 -.00013 (25*2π)/773 weeks
26.0011 -.00208 (26*2π)/773 weeks
27.0048 -.00125 (27*2π)/773 weeks
28.0012 .00114 (28*2π)/773 weeks
29.002 -.00303 (29*2π)/773 weeks
30.00435   (30*2π)/773 weeks
31.002 -.0005 (31*2π)/772 weeks
32.0043 .00012 (32*2π)/772 weeks
33.0009 .00175 (33*2π)/772 weeks
34.00188 -.00209 (34*2π)/772 weeks
35.00354 .00114 (35*2π)/772 weeks
36.00053 -.00046 (36*2π)/772 weeks
37.00417 -.00073 (37*2π)/772 weeks
38.00117 .00222 (38*2π)/772 weeks
39.00117 -.00222 (39*2π)/772 weeks
40.00417 .00073 (40*2π)/772 weeks
41.00053 .00046 (41*2π)/772 weeks
42.00354 -.00114 (42*2π)/772 weeks
43.00188 .00209 (43*2π)/772 weeks
44.0009 -.00175 (44*2π)/772 weeks
45.0043 -.00012 (45*2π)/772 weeks
46.002 .0005 (46*2π)/772 weeks
47.00435   (47*2π)/772 weeks
48.002 .00303 (48*2π)/772 weeks
49.0012 -.00114 (49*2π)/772 weeks
50.0048 .00125 (50*2π)/772 weeks
51.0011 .00208 (51*2π)/772 weeks
52.00334 .00013 (52*2π)/771 weeks
53.00175 .00329 (53*2π)/771 weeks
54.00075 -.00104 (54*2π)/771 weeks
55.00492 .0015 (55*2π)/771 weeks
56.00041 .00242 (56*2π)/771 weeks
57.00364 -.00088 (57*2π)/771 weeks
58.00337 .0041 (58*2π)/771 weeks
59.00072 .00039 (59*2π)/771 weeks
60.00514 .00244 (60*2π)/771 weeks
61-.0003 .00394 (61*2π)/771 weeks
62.00285 -.00109 (62*2π)/771 weeks
63.00398 .00453 (63*2π)/771 weeks
64.00052 .00085 (64*2π)/771 weeks
65.00641 .00234 (65*2π)/771 weeks
66.0017 .00538 (66*2π)/771 weeks
67.00515 .00218 (67*2π)/771 weeks
68.00272 .0098 (68*2π)/771 weeks
69-.00111 .00061 (69*2π)/771 weeks
70.01168 .00732 (70*2π)/771 weeks
71-.00432 .01558 (71*2π)/771 weeks
72.00129 -.00135 (72*2π)/771 weeks
73.00984 .0187 (73*2π)/771 weeks
74-.0087 .01118 (74*2π)/771 weeks
75.02268 .0195 (75*2π)/771 weeks