Back to list of Stocks    See Also: Seasonal Analysis of FDXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of FDX (FedEx Corporation Common Stock)


FDX (FedEx Corporation Common Stock) appears to have interesting cyclic behaviour every 156 weeks (4.6449*sine), 107 weeks (3.9463*sine), and 113 weeks (3.8366*sine).

FDX (FedEx Corporation Common Stock) has an average price of 47.32 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/12/1978 to 3/13/2017 for FDX (FedEx Corporation Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
047.32483   0 
121.2452 -44.51462 (1*2π)/20312,031 weeks
23.43547 -16.34455 (2*2π)/20311,016 weeks
39.87787 -15.05128 (3*2π)/2031677 weeks
48.04422 -19.79239 (4*2π)/2031508 weeks
5-2.11344 -15.98837 (5*2π)/2031406 weeks
6-1.49503 -7.48645 (6*2π)/2031339 weeks
71.24026 -9.33885 (7*2π)/2031290 weeks
8-.44987 -8.90167 (8*2π)/2031254 weeks
9-2.7988 -7.58184 (9*2π)/2031226 weeks
10-2.42864 -2.52715 (10*2π)/2031203 weeks
11.3554 -1.28857 (11*2π)/2031185 weeks
122.1111 -3.55229 (12*2π)/2031169 weeks
131.70856 -4.64488 (13*2π)/2031156 weeks
14.21933 -3.76996 (14*2π)/2031145 weeks
151.0052 -1.76309 (15*2π)/2031135 weeks
161.75074 -3.32254 (16*2π)/2031127 weeks
171.41553 -2.99085 (17*2π)/2031119 weeks
181.63034 -3.83664 (18*2π)/2031113 weeks
19.15123 -3.94633 (19*2π)/2031107 weeks
20.62493 -3.47206 (20*2π)/2031102 weeks
21.36841 -2.5159 (21*2π)/203197 weeks
221.89121 -3.53969 (22*2π)/203192 weeks
23-.11791 -3.67244 (23*2π)/203188 weeks
24.26002 -3.34321 (24*2π)/203185 weeks
25-.21057 -2.38842 (25*2π)/203181 weeks
261.22357 -2.82136 (26*2π)/203178 weeks
27-.75709 -3.34969 (27*2π)/203175 weeks
28-.24369 -2.36362 (28*2π)/203173 weeks
29-.73435 -3.69122 (29*2π)/203170 weeks
30-1.77336 -1.01765 (30*2π)/203168 weeks
31.30177 -.77306 (31*2π)/203166 weeks
32.70298 -1.94481 (32*2π)/203163 weeks
33-.16361 -2.69607 (33*2π)/203162 weeks
34-.70484 -1.45043 (34*2π)/203160 weeks
35.07389 -1.19196 (35*2π)/203158 weeks
36.15167 -1.4312 (36*2π)/203156 weeks
37.33424 -1.57425 (37*2π)/203155 weeks
38.21892 -1.61138 (38*2π)/203153 weeks
39.56287 -2.2541 (39*2π)/203152 weeks
40-.55299 -1.99581 (40*2π)/203151 weeks
41.05611 -1.57047 (41*2π)/203150 weeks
42-.32471 -1.89545 (42*2π)/203148 weeks
43-.61387 -.83862 (43*2π)/203147 weeks
44-.24425 -1.06686 (44*2π)/203146 weeks
45.40445 -.54581 (45*2π)/203145 weeks
46.55094 -1.47236 (46*2π)/203144 weeks
47.25359 -1.53392 (47*2π)/203143 weeks
48.38855 -1.57509 (48*2π)/203142 weeks
49.30889 -1.51222 (49*2π)/203141 weeks
50.24777 -1.9192 (50*2π)/203141 weeks
51-.52958 -1.2055 (51*2π)/203140 weeks
52-.08918 -1.42396 (52*2π)/203139 weeks
53-.42802 -1.49615 (53*2π)/203138 weeks
54.10658 -1.26201 (54*2π)/203138 weeks
55-.21697 -1.33843 (55*2π)/203137 weeks
56-.15105 -.74818 (56*2π)/203136 weeks
57-.09531 -1.53088 (57*2π)/203136 weeks
58-.11588 -1.46404 (58*2π)/203135 weeks
59-.4411 -1.02769 (59*2π)/203134 weeks
60.08534 -1.05979 (60*2π)/203134 weeks
61.04665 -1.38561 (61*2π)/203133 weeks
62-.126 -1.67203 (62*2π)/203133 weeks
63-.85048 -1.13719 (63*2π)/203132 weeks
64-.43799 -.88629 (64*2π)/203132 weeks
65-.41787 -.68412 (65*2π)/203131 weeks
66-.27905 -.7526 (66*2π)/203131 weeks
67-.10009 -.62853 (67*2π)/203130 weeks
68.15161 -1.02066 (68*2π)/203130 weeks
69-.24292 -1.03512 (69*2π)/203129 weeks
70-.21065 -1.10539 (70*2π)/203129 weeks
71-.61038 -.97909 (71*2π)/203129 weeks
72-.37812 -.59852 (72*2π)/203128 weeks
73-.26995 -.81481 (73*2π)/203128 weeks
74-.05201 -.7438 (74*2π)/203127 weeks
75-.27868 -.90916 (75*2π)/203127 weeks
76-.29124 -.70343 (76*2π)/203127 weeks
77-.65101 -.73072 (77*2π)/203126 weeks
78-.35044 -.23914 (78*2π)/203126 weeks
79.0355 -.44361 (79*2π)/203126 weeks
80-.49707 -.52801 (80*2π)/203125 weeks
81-.1598 -.07802 (81*2π)/203125 weeks
82.26807 -.22596 (82*2π)/203125 weeks
83.25681 -.3087 (83*2π)/203124 weeks
84.32494 -.65677 (84*2π)/203124 weeks
85.38366 -.58593 (85*2π)/203124 weeks
86.35308 -.85504 (86*2π)/203124 weeks
87.2621 -.74926 (87*2π)/203123 weeks
88.03263 -.99216 (88*2π)/203123 weeks
89.00012 -.64873 (89*2π)/203123 weeks
90.38371 -1.06587 (90*2π)/203123 weeks
91-.24157 -.96424 (91*2π)/203122 weeks
92-.08787 -.71119 (92*2π)/203122 weeks
93-.18461 -.78775 (93*2π)/203122 weeks
94.04102 -.72601 (94*2π)/203122 weeks
95-.01813 -.7465 (95*2π)/203121 weeks
96.10255 -1.02554 (96*2π)/203121 weeks
97-.38192 -1.16849 (97*2π)/203121 weeks
98-.50109 -.86286 (98*2π)/203121 weeks
99-.52738 -.48719 (99*2π)/203121 weeks
100-.16639 -.5351 (100*2π)/203120 weeks
101-.29783 -.78251 (101*2π)/203120 weeks
102-.48572 -.53263 (102*2π)/203120 weeks
103-.4322 -.46146 (103*2π)/203120 weeks
104-.1645 -.16905 (104*2π)/203120 weeks
105-.16616 -.58994 (105*2π)/203119 weeks
106-.3244 -.42474 (106*2π)/203119 weeks
107-.20963 -.25239 (107*2π)/203119 weeks
108-.11296 -.23 (108*2π)/203119 weeks
109.07906 -.45757 (109*2π)/203119 weeks
110-.27025 -.43602 (110*2π)/203118 weeks
111-.34013 -.29023 (111*2π)/203118 weeks
112-.11448 .12168 (112*2π)/203118 weeks
113.37419 -.10475 (113*2π)/203118 weeks
114.28503 -.56888 (114*2π)/203118 weeks
115.02553 -.47662 (115*2π)/203118 weeks
116.1264 -.1825 (116*2π)/203118 weeks
117.36995 -.51147 (117*2π)/203117 weeks
118.17893 -.71725 (118*2π)/203117 weeks
119.13375 -.57907 (119*2π)/203117 weeks
120-.03906 -.87657 (120*2π)/203117 weeks
121-.43588 -.45056 (121*2π)/203117 weeks
122.02959 -.1852 (122*2π)/203117 weeks
123.35807 -.37467 (123*2π)/203117 weeks
124.29146 -.82614 (124*2π)/203116 weeks
125-.38489 -.88773 (125*2π)/203116 weeks
126-.23347 -.36036 (126*2π)/203116 weeks
127.02884 -.37606 (127*2π)/203116 weeks
128.13357 -.47517 (128*2π)/203116 weeks
129-.05059 -.65809 (129*2π)/203116 weeks
130-.18229 -.5439 (130*2π)/203116 weeks
131.00762 -.29673 (131*2π)/203116 weeks
132.10934 -.67821 (132*2π)/203115 weeks
133-.15127 -.64959 (133*2π)/203115 weeks
134-.15102 -.47017 (134*2π)/203115 weeks
135-.15295 -.53165 (135*2π)/203115 weeks
136-.21035 -.50059 (136*2π)/203115 weeks
137-.1242 -.33022 (137*2π)/203115 weeks
138-.00791 -.42293 (138*2π)/203115 weeks
139-.22651 -.47751 (139*2π)/203115 weeks
140-.01673 -.37932 (140*2π)/203115 weeks
141-.19217 -.3772 (141*2π)/203114 weeks
142.02439 -.32482 (142*2π)/203114 weeks
143.04342 -.57962 (143*2π)/203114 weeks
144-.15559 -.38005 (144*2π)/203114 weeks
145.13294 -.30112 (145*2π)/203114 weeks
146-.07433 -.71236 (146*2π)/203114 weeks
147-.28454 -.39956 (147*2π)/203114 weeks
148-.10446 -.34965 (148*2π)/203114 weeks
149-.06568 -.16909 (149*2π)/203114 weeks
150.13755 -.36049 (150*2π)/203114 weeks
151-.02004 -.4752 (151*2π)/203113 weeks
152.17954 -.55051 (152*2π)/203113 weeks
153-.07337 -.63745 (153*2π)/203113 weeks
154-.14462 -.46003 (154*2π)/203113 weeks
155-.11074 -.52445 (155*2π)/203113 weeks
156-.14154 -.40912 (156*2π)/203113 weeks
157-.13341 -.4272 (157*2π)/203113 weeks
158-.03404 -.34046 (158*2π)/203113 weeks
159-.03434 -.50603 (159*2π)/203113 weeks
160-.13368 -.52412 (160*2π)/203113 weeks
161-.26036 -.39736 (161*2π)/203113 weeks
162-.13733 -.37058 (162*2π)/203113 weeks
163-.13116 -.40409 (163*2π)/203112 weeks
164-.06455 -.31866 (164*2π)/203112 weeks
165-.03355 -.39131 (165*2π)/203112 weeks
166-.1262 -.36888 (166*2π)/203112 weeks
167-.10381 -.33193 (167*2π)/203112 weeks
168.00987 -.37859 (168*2π)/203112 weeks
169-.10889 -.45268 (169*2π)/203112 weeks
170-.1364 -.25055 (170*2π)/203112 weeks
171.10307 -.37722 (171*2π)/203112 weeks
172.02221 -.55463 (172*2π)/203112 weeks
173-.08577 -.48594 (173*2π)/203112 weeks
174-.09365 -.51546 (174*2π)/203112 weeks
175-.23161 -.65943 (175*2π)/203112 weeks
176-.45804 -.35575 (176*2π)/203112 weeks
177-.06726 -.22895 (177*2π)/203111 weeks
178-.13898 -.50311 (178*2π)/203111 weeks
179-.31021 -.30209 (179*2π)/203111 weeks
180-.36589 -.19457 (180*2π)/203111 weeks
181-.05442 -.16027 (181*2π)/203111 weeks
182-.11801 -.38076 (182*2π)/203111 weeks
183-.11138 -.16375 (183*2π)/203111 weeks
184.02366 -.43108 (184*2π)/203111 weeks
185-.25279 -.33388 (185*2π)/203111 weeks
186-.04548 -.16693 (186*2π)/203111 weeks
187-.06707 -.31759 (187*2π)/203111 weeks
188-.06636 -.28378 (188*2π)/203111 weeks
189-.12433 -.32726 (189*2π)/203111 weeks
190-.14248 -.31807 (190*2π)/203111 weeks
191-.13296 -.17159 (191*2π)/203111 weeks
192.08834 -.28078 (192*2π)/203111 weeks
193.02401 -.41469 (193*2π)/203111 weeks
194-.11226 -.44764 (194*2π)/203110 weeks
195-.18199 -.32316 (195*2π)/203110 weeks
196-.05555 -.30341 (196*2π)/203110 weeks
197.00451 -.34007 (197*2π)/203110 weeks
198-.11125 -.50266 (198*2π)/203110 weeks
199-.30065 -.24174 (199*2π)/203110 weeks
200-.01896 -.17149 (200*2π)/203110 weeks
201-.06136 -.42363 (201*2π)/203110 weeks
202-.17734 -.35223 (202*2π)/203110 weeks
203-.14252 -.2505 (203*2π)/203110 weeks
204-.02141 -.27936 (204*2π)/203110 weeks
205-.00588 -.45698 (205*2π)/203110 weeks
206-.18414 -.49727 (206*2π)/203110 weeks
207-.22179 -.39514 (207*2π)/203110 weeks
208-.29936 -.39635 (208*2π)/203110 weeks
209-.30707 -.27543 (209*2π)/203110 weeks
210-.22433 -.09037 (210*2π)/203110 weeks
211-.04061 -.22096 (211*2π)/203110 weeks
212-.22437 -.33944 (212*2π)/203110 weeks
213-.17903 -.212 (213*2π)/203110 weeks
214-.17843 -.2118 (214*2π)/20319 weeks
215-.16493 -.12527 (215*2π)/20319 weeks
216-.12757 -.22946 (216*2π)/20319 weeks
217-.11035 -.06513 (217*2π)/20319 weeks
218.03195 -.35029 (218*2π)/20319 weeks
219-.17501 -.24892 (219*2π)/20319 weeks
220-.05054 -.34563 (220*2π)/20319 weeks
221-.22391 -.26953 (221*2π)/20319 weeks
222-.05232 -.21316 (222*2π)/20319 weeks
223-.25462 -.2488 (223*2π)/20319 weeks
224-.03537 -.12363 (224*2π)/20319 weeks
225-.18684 -.32149 (225*2π)/20319 weeks
226-.16683 -.17761 (226*2π)/20319 weeks
227-.25594 -.23366 (227*2π)/20319 weeks
228-.23399 -.00255 (228*2π)/20319 weeks
229.00572 -.08076 (229*2π)/20319 weeks
230.02274 -.13183 (230*2π)/20319 weeks
231.01141 -.24532 (231*2π)/20319 weeks
232-.118 -.25454 (232*2π)/20319 weeks
233-.04058 -.19137 (233*2π)/20319 weeks
234-.05846 -.17672 (234*2π)/20319 weeks
235.00057 -.21947 (235*2π)/20319 weeks
236-.14053 -.33687 (236*2π)/20319 weeks
237-.22035 -.12116 (237*2π)/20319 weeks
238.00195 -.07092 (238*2π)/20319 weeks
239.02483 -.08983 (239*2π)/20318 weeks
240.07345 -.29971 (240*2π)/20318 weeks
241-.14091 -.27816 (241*2π)/20318 weeks
242-.05574 -.12815 (242*2π)/20318 weeks
243.06898 -.13112 (243*2π)/20318 weeks
244.08401 -.3288 (244*2π)/20318 weeks
245-.10023 -.25785 (245*2π)/20318 weeks
246.01273 -.23542 (246*2π)/20318 weeks
247-.03102 -.26063 (247*2π)/20318 weeks
248.01922 -.32769 (248*2π)/20318 weeks
249-.2113 -.37674 (249*2π)/20318 weeks
250-.11924 -.18495 (250*2π)/20318 weeks
251-.09523 -.26745 (251*2π)/20318 weeks
252-.03087 -.13954 (252*2π)/20318 weeks
253-.02318 -.25301 (253*2π)/20318 weeks
254-.0987 -.32411 (254*2π)/20318 weeks
255-.1212 -.25465 (255*2π)/20318 weeks
256-.08466 -.1922 (256*2π)/20318 weeks
257-.0403 -.22337 (257*2π)/20318 weeks
258-.05497 -.23589 (258*2π)/20318 weeks
259-.15078 -.21554 (259*2π)/20318 weeks
260-.03339 -.09113 (260*2π)/20318 weeks
261.06599 -.3546 (261*2π)/20318 weeks
262-.21702 -.35017 (262*2π)/20318 weeks
263-.18244 -.1248 (263*2π)/20318 weeks
264.06389 -.07394 (264*2π)/20318 weeks
265.0864 -.32695 (265*2π)/20318 weeks
266-.06747 -.34108 (266*2π)/20318 weeks
267-.08928 -.33137 (267*2π)/20318 weeks
268-.11472 -.29844 (268*2π)/20318 weeks
269-.18426 -.25243 (269*2π)/20318 weeks
270-.10794 -.26123 (270*2π)/20318 weeks
271-.15118 -.26724 (271*2π)/20317 weeks
272-.14192 -.17239 (272*2π)/20317 weeks
273-.10798 -.17635 (273*2π)/20317 weeks
274-.04529 -.23618 (274*2π)/20317 weeks
275-.12468 -.28951 (275*2π)/20317 weeks
276-.15406 -.24873 (276*2π)/20317 weeks
277-.24017 -.18866 (277*2π)/20317 weeks
278-.19646 -.09349 (278*2π)/20317 weeks
279-.02532 -.03461 (279*2π)/20317 weeks
280.03975 -.19238 (280*2π)/20317 weeks
281-.06915 -.21617 (281*2π)/20317 weeks
282-.03534 -.28697 (282*2π)/20317 weeks
283-.12275 -.29477 (283*2π)/20317 weeks
284-.06931 -.20083 (284*2π)/20317 weeks
285-.13924 -.16999 (285*2π)/20317 weeks
286-.03089 -.16968 (286*2π)/20317 weeks
287-.10298 -.22188 (287*2π)/20317 weeks
288-.00754 -.20756 (288*2π)/20317 weeks
289-.04261 -.28782 (289*2π)/20317 weeks
290-.14649 -.32061 (290*2π)/20317 weeks
291-.22725 -.27707 (291*2π)/20317 weeks
292-.13906 -.11794 (292*2π)/20317 weeks
293-.04848 -.16523 (293*2π)/20317 weeks
294-.08746 -.30072 (294*2π)/20317 weeks
295-.22536 -.22724 (295*2π)/20317 weeks
296-.17582 -.1674 (296*2π)/20317 weeks
297-.14608 -.09605 (297*2π)/20317 weeks
298-.01295 -.11854 (298*2π)/20317 weeks
299-.09148 -.31294 (299*2π)/20317 weeks
300-.22311 -.141 (300*2π)/20317 weeks
301-.03809 -.08626 (301*2π)/20317 weeks
302-.02773 -.20464 (302*2π)/20317 weeks
303-.10183 -.23523 (303*2π)/20317 weeks
304-.1221 -.2008 (304*2π)/20317 weeks
305-.12619 -.14205 (305*2π)/20317 weeks
306-.10616 -.19931 (306*2π)/20317 weeks
307-.18 -.14767 (307*2π)/20317 weeks
308-.03797 -.10976 (308*2π)/20317 weeks
309-.07754 -.1314 (309*2π)/20317 weeks
310-.01015 -.19658 (310*2π)/20317 weeks
311-.0554 -.28351 (311*2π)/20317 weeks
312-.1112 -.19233 (312*2π)/20317 weeks
313-.15831 -.17824 (313*2π)/20316 weeks
314-.12942 -.11421 (314*2π)/20316 weeks
315-.06229 -.16303 (315*2π)/20316 weeks
316-.0908 -.19871 (316*2π)/20316 weeks
317-.05021 -.13078 (317*2π)/20316 weeks
318-.1258 -.19683 (318*2π)/20316 weeks
319-.05029 -.15231 (319*2π)/20316 weeks
320-.04656 -.23247 (320*2π)/20316 weeks
321-.08551 -.18609 (321*2π)/20316 weeks
322-.12737 -.17852 (322*2π)/20316 weeks
323-.14702 -.16982 (323*2π)/20316 weeks
324-.15304 -.14432 (324*2π)/20316 weeks
325-.00214 -.10606 (325*2π)/20316 weeks
326-.00666 -.18245 (326*2π)/20316 weeks
327-.11861 -.22564 (327*2π)/20316 weeks
328-.13499 -.19505 (328*2π)/20316 weeks
329-.10909 -.1458 (329*2π)/20316 weeks
330-.09354 -.12551 (330*2π)/20316 weeks
331-.05493 -.16717 (331*2π)/20316 weeks
332-.1125 -.18142 (332*2π)/20316 weeks
333-.05685 -.14648