Back to list of Stocks    See Also: Seasonal Analysis of FGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of F (Ford Motor Company Common Stock)


F (Ford Motor Company Common Stock) appears to have interesting cyclic behaviour every 155 weeks (.8521*sine), 166 weeks (.5441*cosine), and 155 weeks (.4849*cosine).

F (Ford Motor Company Common Stock) has an average price of 6.06 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 1/9/2017 for F (Ford Motor Company Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
06.05677   0 
1-1.12585 -5.61621 (1*2π)/23282,328 weeks
21.32798 .28346 (2*2π)/23281,164 weeks
31.82237 -3.12804 (3*2π)/2328776 weeks
4-1.53817 -1.28958 (4*2π)/2328582 weeks
5.55657 -.73014 (5*2π)/2328466 weeks
6-.52935 -1.2617 (6*2π)/2328388 weeks
7-.22144 .37076 (7*2π)/2328333 weeks
8.85676 -1.20192 (8*2π)/2328291 weeks
9-.74621 -.66695 (9*2π)/2328259 weeks
10-.16563 -.3142 (10*2π)/2328233 weeks
11-.30334 -.33286 (11*2π)/2328212 weeks
12-.25266 -.03833 (12*2π)/2328194 weeks
13-.05335 .22447 (13*2π)/2328179 weeks
14.54412 .1237 (14*2π)/2328166 weeks
15.48494 -.85212 (15*2π)/2328155 weeks
16-.457 -.40971 (16*2π)/2328146 weeks
17.09495 -.08401 (17*2π)/2328137 weeks
18-.12019 -.45142 (18*2π)/2328129 weeks
19-.12861 .02332 (19*2π)/2328123 weeks
20.08301 -.27304 (20*2π)/2328116 weeks
21-.109 -.11768 (21*2π)/2328111 weeks
22.01254 -.12454 (22*2π)/2328106 weeks
23-.0364 -.11927 (23*2π)/2328101 weeks
24.04981 -.05895 (24*2π)/232897 weeks
25.13303 -.15184 (25*2π)/232893 weeks
26-.02849 -.23934 (26*2π)/232890 weeks
27.00111 -.10953 (27*2π)/232886 weeks
28.01812 -.15604 (28*2π)/232883 weeks
29-.03299 -.16452 (29*2π)/232880 weeks
30.03412 -.06574 (30*2π)/232878 weeks
31.08535 -.20121 (31*2π)/232875 weeks
32-.09821 -.2794 (32*2π)/232873 weeks
33-.09348 -.05532 (33*2π)/232871 weeks
34-.08209 -.07386 (34*2π)/232868 weeks
35-.05798 -.08051 (35*2π)/232867 weeks
36.06141 .08744 (36*2π)/232865 weeks
37.14233 -.14335 (37*2π)/232863 weeks
38.01396 -.22926 (38*2π)/232861 weeks
39-.02885 -.09594 (39*2π)/232860 weeks
40.03022 -.16038 (40*2π)/232858 weeks
41-.13732 -.2011 (41*2π)/232857 weeks
42-.08555 .0058 (42*2π)/232855 weeks
43.04406 -.06392 (43*2π)/232854 weeks
44-.14172 -.12871 (44*2π)/232853 weeks
45.09881 .12632 (45*2π)/232852 weeks
46.0309 -.21988 (46*2π)/232851 weeks
47-.0527 -.05331 (47*2π)/232850 weeks
48.05769 -.07835 (48*2π)/232849 weeks
49-.13803 -.19175 (49*2π)/232848 weeks
50-.09841 .09378 (50*2π)/232847 weeks
51.02357 .03704 (51*2π)/232846 weeks
52.13612 .01558 (52*2π)/232845 weeks
53.03581 -.15966 (53*2π)/232844 weeks
54.04849 -.04725 (54*2π)/232843 weeks
55.02389 -.15247 (55*2π)/232842 weeks
56-.06589 -.09776 (56*2π)/232842 weeks
57.03191 -.00291 (57*2π)/232841 weeks
58.02952 -.195 (58*2π)/232840 weeks
59-.09409 -.04344 (59*2π)/232839 weeks
60.04437 -.10761 (60*2π)/232839 weeks
61-.18636 -.09147 (61*2π)/232838 weeks
62.02094 .06915 (62*2π)/232838 weeks
63-.05209 -.06695 (63*2π)/232837 weeks
64-.01057 .06767 (64*2π)/232836 weeks
65.11534 -.03328 (65*2π)/232836 weeks
66-.01644 -.05752 (66*2π)/232835 weeks
67.08672 -.06026 (67*2π)/232835 weeks
68-.05117 -.11917 (68*2π)/232834 weeks
69-.03752 .03186 (69*2π)/232834 weeks
70.06963 -.02418 (70*2π)/232833 weeks
71.01952 -.03621 (71*2π)/232833 weeks
72.04955 -.04519 (72*2π)/232832 weeks
73.05972 -.06145 (73*2π)/232832 weeks
74.02766 -.10949 (74*2π)/232831 weeks
75-.009 -.07778 (75*2π)/232831 weeks
76-.00072 -.06573 (76*2π)/232831 weeks
77-.00209 -.05492 (77*2π)/232830 weeks
78.0142 -.03738 (78*2π)/232830 weeks
79.0508 -.10673 (79*2π)/232829 weeks
80-.07028 -.11016 (80*2π)/232829 weeks
81-.01464 .01959 (81*2π)/232829 weeks
82.05968 -.09504 (82*2π)/232828 weeks
83-.04332 -.10042 (83*2π)/232828 weeks
84-.07358 -.0521 (84*2π)/232828 weeks
85-.01598 .01662 (85*2π)/232827 weeks
86.05768 -.03561 (86*2π)/232827 weeks
87-.04847 -.09323 (87*2π)/232827 weeks
88.01357 .02755 (88*2π)/232826 weeks
89.06423 -.09339 (89*2π)/232826 weeks
90-.07502 -.09648 (90*2π)/232826 weeks
91.01127 -.00027 (91*2π)/232826 weeks
92-.00709 -.06535 (92*2π)/232825 weeks
93-.00552 -.05154 (93*2π)/232825 weeks
94-.01823 -.06346 (94*2π)/232825 weeks
95-.04192 -.01604 (95*2π)/232825 weeks
96.0294 -.04419 (96*2π)/232824 weeks
97-.04224 -.07958 (97*2π)/232824 weeks
98-.02159 .02151 (98*2π)/232824 weeks
99.01723 -.08561 (99*2π)/232824 weeks
100-.0839 -.00379 (100*2π)/232823 weeks
101.04644 .03218 (101*2π)/232823 weeks
102.00023 -.08466 (102*2π)/232823 weeks
103.00254 .01508 (103*2π)/232823 weeks
104.03426 -.08086 (104*2π)/232822 weeks
105-.06086 -.05437 (105*2π)/232822 weeks
106-.00248 .01434 (106*2π)/232822 weeks
107-.0025 -.04098 (107*2π)/232822 weeks
108-.03381 .00076 (108*2π)/232822 weeks
109.04592 .0124 (109*2π)/232821 weeks
110.01257 -.03348 (110*2π)/232821 weeks
111.04645 -.0183 (111*2π)/232821 weeks
112.03676 -.05619 (112*2π)/232821 weeks
113.03028 -.08773 (113*2π)/232821 weeks
114-.04681 -.08258 (114*2π)/232820 weeks
115-.02301 .00339 (115*2π)/232820 weeks
116.01851 -.05261 (116*2π)/232820 weeks
117-.01427 -.02018 (117*2π)/232820 weeks
118.03946 -.04882 (118*2π)/232820 weeks
119-.05445 -.08487 (119*2π)/232820 weeks
120-.00186 .0317 (120*2π)/232819 weeks
121.03086 -.08402 (121*2π)/232819 weeks
122-.05675 -.02794 (122*2π)/232819 weeks
123.03588 -.00727 (123*2π)/232819 weeks
124-.01303 -.05758 (124*2π)/232819 weeks
125-.00262 -.01792 (125*2π)/232819 weeks
126.02266 -.04262 (126*2π)/232818 weeks
127.01346 -.04378 (127*2π)/232818 weeks
128-.00037 -.0927 (128*2π)/232818 weeks
129-.05402 -.03835 (129*2π)/232818 weeks
130-.00029 -.01359 (130*2π)/232818 weeks
131-.01259 -.06846 (131*2π)/232818 weeks
132-.04557 -.00153 (132*2π)/232818 weeks
133.02867 -.02165 (133*2π)/232818 weeks
134.00174 -.07528 (134*2π)/232817 weeks
135-.05841 -.038 (135*2π)/232817 weeks
136-.01252 -.01564 (136*2π)/232817 weeks
137-.03546 -.0181 (137*2π)/232817 weeks
138.00339 .00801 (138*2π)/232817 weeks
139.02816 -.04619 (139*2π)/232817 weeks
140-.03836 -.06189 (140*2π)/232817 weeks
141-.04117 -.01121 (141*2π)/232817 weeks
142-.03282 -.00777 (142*2π)/232816 weeks
143-.02169 .04176 (143*2π)/232816 weeks
144.07299 .02094 (144*2π)/232816 weeks
145.02869 -.09668 (145*2π)/232816 weeks
146-.03652 -.00404 (146*2π)/232816 weeks
147.03671 -.04812 (147*2π)/232816 weeks
148-.04987 -.04291 (148*2π)/232816 weeks
149.003 .02045 (149*2π)/232816 weeks
150.04163 -.0484 (150*2π)/232816 weeks
151-.03531 -.04532 (151*2π)/232815 weeks
152.00326 -.01737 (152*2π)/232815 weeks
153-.00819 -.02006 (153*2π)/232815 weeks
154.00928 -.0172 (154*2π)/232815 weeks
155.02416 -.05218 (155*2π)/232815 weeks
156-.02803 -.04164 (156*2π)/232815 weeks
157-.00813 -.03599 (157*2π)/232815 weeks
158-.0232 -.02403 (158*2π)/232815 weeks
159.00274 -.01697 (159*2π)/232815 weeks
160-.03148 -.04761 (160*2π)/232815 weeks
161-.01682 .01188 (161*2π)/232814 weeks
162.00673 -.01913 (162*2π)/232814 weeks
163-.01025 -.01746 (163*2π)/232814 weeks
164.00896 -.00834 (164*2π)/232814 weeks
165.01679 -.02486 (165*2π)/232814 weeks
166.001 -.05359 (166*2π)/232814 weeks
167-.03787 -.0113 (167*2π)/232814 weeks
168.03006 -.00163 (168*2π)/232814 weeks
169-.00379 -.05739 (169*2π)/232814 weeks
170-.0133 .01402 (170*2π)/232814 weeks
171.06451 -.05769 (171*2π)/232814 weeks
172-.06843 -.07578 (172*2π)/232814 weeks
173.00735 .02796 (173*2π)/232813 weeks
174.01508 -.08349 (174*2π)/232813 weeks
175-.07992 -.02124 (175*2π)/232813 weeks
176.02515 .01867 (176*2π)/232813 weeks
177-.01852 -.05821 (177*2π)/232813 weeks
178-.02503 .02627 (178*2π)/232813 weeks
179.05011 -.03654 (179*2π)/232813 weeks
180-.03508 -.05549 (180*2π)/232813 weeks
181-.00463 -.01276 (181*2π)/232813 weeks
182-.02511 -.05845 (182*2π)/232813 weeks
183-.0569 .01103 (183*2π)/232813 weeks
184.01632 .02037 (184*2π)/232813 weeks
185.00517 -.02852 (185*2π)/232813 weeks
186.00338 -.0045 (186*2π)/232813 weeks
187.00462 -.02503 (187*2π)/232812 weeks
188.01415 -.02266 (188*2π)/232812 weeks
189.00001 -.04552 (189*2π)/232812 weeks
190-.02307 -.03317 (190*2π)/232812 weeks
191-.0274 -.01584 (191*2π)/232812 weeks
192.009 .00861 (192*2π)/232812 weeks
193.01392 -.04457 (193*2π)/232812 weeks
194-.02117 -.02782 (194*2π)/232812 weeks
195.00351 -.01845 (195*2π)/232812 weeks
196-.00554 -.04048 (196*2π)/232812 weeks
197-.03272 -.03634 (197*2π)/232812 weeks
198-.0181 .00268 (198*2π)/232812 weeks
199-.00704 -.03435 (199*2π)/232812 weeks
200-.05357 -.00782 (200*2π)/232812 weeks
201.01069 .02438 (201*2π)/232812 weeks
202.00116 -.02088 (202*2π)/232812 weeks
203-.01007 -.00537 (203*2π)/232811 weeks
204.00647 -.00375 (204*2π)/232811 weeks
205.01347 -.01668 (205*2π)/232811 weeks
206-.01215 -.02227 (206*2π)/232811 weeks
207.00325 -.00922 (207*2π)/232811 weeks
208.00256 -.01051 (208*2π)/232811 weeks
209.00632 -.01294 (209*2π)/232811 weeks
210.02468 -.0123 (210*2π)/232811 weeks
211.017 -.05484 (211*2π)/232811 weeks
212-.03224 -.03736 (212*2π)/232811 weeks
213-.00101 -.00217