Back to list of Stocks    See Also: Seasonal Analysis of ERYGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ERY (Direxion Daily Energy Bear 3X S)


ERY (Direxion Daily Energy Bear 3X S) appears to have interesting cyclic behaviour every 44 weeks (52.3427*sine), 40 weeks (44.198*sine), and 16 weeks (19.5135*cosine).

ERY (Direxion Daily Energy Bear 3X S) has an average price of 167.05 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 11/19/2008 to 3/13/2017 for ERY (Direxion Daily Energy Bear 3X S), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0167.0511   0 
1195.4169 135.7546 (1*2π)/435435 weeks
2103.7799 127.1464 (2*2π)/435218 weeks
360.66936 105.0112 (3*2π)/435145 weeks
454.51239 84.42693 (4*2π)/435109 weeks
552.86106 86.19865 (5*2π)/43587 weeks
634.00692 91.24303 (6*2π)/43573 weeks
710.13046 80.04288 (7*2π)/43562 weeks
83.60226 55.67364 (8*2π)/43554 weeks
910.86765 48.88645 (9*2π)/43548 weeks
106.78378 52.34272 (10*2π)/43544 weeks
111.35704 44.19798 (11*2π)/43540 weeks
12.54297 39.37506 (12*2π)/43536 weeks
13-2.91028 34.45039 (13*2π)/43533 weeks
141.46533 28.76258 (14*2π)/43531 weeks
15.25113 30.08045 (15*2π)/43529 weeks
16-3.54045 24.69978 (16*2π)/43527 weeks
17-5.55138 19.85286 (17*2π)/43526 weeks
18-5.25583 12.81268 (18*2π)/43524 weeks
19-.43654 9.31626 (19*2π)/43523 weeks
204.19101 5.92814 (20*2π)/43522 weeks
2110.24889 7.01189 (21*2π)/43521 weeks
2210.23818 7.40273 (22*2π)/43520 weeks
2313.27006 6.82723 (23*2π)/43519 weeks
2414.73824 9.89322 (24*2π)/43518 weeks
2514.36288 10.39116 (25*2π)/43517 weeks
2618.01735 10.79244 (26*2π)/43517 weeks
2719.51348 16.04108 (27*2π)/43516 weeks
2815.92155 18.8029 (28*2π)/43516 weeks
2913.69892 19.0051 (29*2π)/43515 weeks
3011.64063 19.21109 (30*2π)/43515 weeks
319.9592 18.27856 (31*2π)/43514 weeks
3210.90952 17.63698 (32*2π)/43514 weeks
3310.52321 20.4838 (33*2π)/43513 weeks
346.39325 20.29573 (34*2π)/43513 weeks
354.87279 18.01606 (35*2π)/43512 weeks
364.29942 17.20849 (36*2π)/43512 weeks
373.97514 15.4992 (37*2π)/43512 weeks
385.23247 14.49679 (38*2π)/43511 weeks
394.79697 15.16457 (39*2π)/43511 weeks
404.50291 15.84074 (40*2π)/43511 weeks
413.34146 16.08461 (41*2π)/43511 weeks
421.8873 16.23458 (42*2π)/43510 weeks
43-.6055 15.55946 (43*2π)/43510 weeks
44-2.5125 13.86207 (44*2π)/43510 weeks
45-4.0245 10.67762 (45*2π)/43510 weeks
46-3.75722 7.41865 (46*2π)/4359 weeks
47-2.66682 5.71936 (47*2π)/4359 weeks
48-2.52904 2.95885 (48*2π)/4359 weeks
49.9061 .49223 (49*2π)/4359 weeks
503.66805 1.19598 (50*2π)/4359 weeks
514.96144 1.07254 (51*2π)/4359 weeks
526.3324 1.45063 (52*2π)/4358 weeks
536.81624 2.63408 (53*2π)/4358 weeks
548.10592 .71682 (54*2π)/4358 weeks
5512.24237 2.62516 (55*2π)/4358 weeks
5612.12311 6.65551 (56*2π)/4358 weeks
5710.36705 8.96195 (57*2π)/4358 weeks
588.74384 9.91039 (58*2π)/4358 weeks
595.9018 9.2828 (59*2π)/4357 weeks
606.04996 6.30305 (60*2π)/4357 weeks
619.70068 6.94106 (61*2π)/4357 weeks
628.86139 10.2101 (62*2π)/4357 weeks
635.89233 9.97232 (63*2π)/4357 weeks
645.93292 9.30875 (64*2π)/4357 weeks
655.21748 9.49521 (65*2π)/4357 weeks
665.57878 7.91958 (66*2π)/4357 weeks
676.96458 9.59977 (67*2π)/4356 weeks
685.09782 11.72972 (68*2π)/4356 weeks
693.05693 11.35694 (69*2π)/4356 weeks
701.61591 10.55325 (70*2π)/4356 weeks
71.17261 10.14658 (71*2π)/4356 weeks
72-1.39506 8.79392 (72*2π)/4356 weeks
73-2.39949 7.13391 (73*2π)/4356 weeks
74-3.72025 4.87083 (74*2π)/4356 weeks
75-2.85432 1.10464 (75*2π)/4356 weeks
76.36517 -.23056 (76*2π)/4356 weeks
772.39625 -.40392 (77*2π)/4356 weeks
783.60616 .12686 (78*2π)/4356 weeks
793.94641 .37368 (79*2π)/4356 weeks
804.34657 .06275 (80*2π)/4355 weeks
815.67704 .09715 (81*2π)/4355 weeks
826.67158 1.51181 (82*2π)/4355 weeks
836.59905 2.36574 (83*2π)/4355 weeks
846.47886 2.78656 (84*2π)/4355 weeks
856.18072 2.4412 (85*2π)/4355 weeks
866.6947 2.50133 (86*2π)/4355 weeks
876.64308 3.43224 (87*2π)/4355 weeks
885.96092 4.18626 (88*2π)/4355 weeks
894.83666 3.73749 (89*2π)/4355 weeks
905.2327 2.35192 (90*2π)/4355 weeks
916.22708 2.7192 (91*2π)/4355 weeks
925.83051 2.73013 (92*2π)/4355 weeks
935.97675 2.33152 (93*2π)/4355 weeks
946.71733 2.40015 (94*2π)/4355 weeks
956.83845 3.05664 (95*2π)/4355 weeks
966.99054 2.95539 (96*2π)/4355 weeks
977.55455 3.39266 (97*2π)/4354 weeks
987.73065 4.39895 (98*2π)/4354 weeks
997.26529 4.99692 (99*2π)/4354 weeks
1006.02749 5.69751 (100*2π)/4354 weeks
1014.5293 5.17846 (101*2π)/4354 weeks
1024.36271 3.56903 (102*2π)/4354 weeks
1035.64783 2.56845 (103*2π)/4354 weeks
1047.2935 3.4247 (104*2π)/4354 weeks
1057.64211 5.16788 (105*2π)/4354 weeks
1066.07583 6.20731 (106*2π)/4354 weeks
1074.71991 5.3975 (107*2π)/4354 weeks
1084.92473 5.68624 (108*2π)/4354 weeks
1093.65373 6.51264 (109*2π)/4354 weeks
1102.16508 5.30973 (110*2π)/4354 weeks
1112.02438 3.92042 (111*2π)/4354 weeks
1121.81734 2.45992 (112*2π)/4354 weeks
1133.21194 .59792 (113*2π)/4354 weeks
1145.14109 1.09346 (114*2π)/4354 weeks
1155.31214 2.34604 (115*2π)/4354 weeks
1165.45759 2.556 (116*2π)/4354 weeks
1175.76325 2.88747 (117*2π)/4354 weeks
1185.80166 3.06651 (118*2π)/4354 weeks
1196.54729 3.79231 (119*2π)/4354 weeks
1205.63186 5.8077 (120*2π)/4354 weeks
1213.17698 5.88821 (121*2π)/4354 weeks
1222.04552 4.48365 (122*2π)/4354 weeks
1232.07142 3.16687 (123*2π)/4354 weeks
1242.87983 2.21603 (124*2π)/4354 weeks
1254.03165 2.54297 (125*2π)/4353 weeks
1263.34993 3.70407 (126*2π)/4353 weeks
1272.09976 3.06076 (127*2π)/4353 weeks
1282.13114 2.02136 (128*2π)/4353 weeks
1292.50975 1.49598 (129*2π)/4353 weeks
1303.21121 1.46268 (130*2π)/4353 weeks
1312.8896 1.55601 (131*2π)/4353 weeks
1323.25643 .96403 (132*2π)/4353 weeks
1333.44855 1.16507 (133*2π)/4353 weeks
1343.48323 .99093 (134*2π)/4353 weeks
1353.89742 1.15283 (135*2π)/4353 weeks
1363.86972 1.24351 (136*2π)/4353 weeks
1373.57694 1.49961 (137*2π)/4353 weeks
1383.25009 1.55906 (138*2π)/4353 weeks
1392.79692 1.40883 (139*2π)/4353 weeks
1402.52582 .72576 (140*2π)/4353 weeks
1413.05591 -.16121 (141*2π)/4353 weeks
1423.7926 .10459 (142*2π)/4353 weeks
1433.59475 .16299 (143*2π)/4353 weeks
1443.97994 .0871 (144*2π)/4353 weeks
1453.84549 .53152 (145*2π)/4353 weeks
1463.80863 .55751 (146*2π)/4353 weeks
1473.3215 .66771 (147*2π)/4353 weeks
1482.97238 -.39103 (148*2π)/4353 weeks
1493.86977 -.67514 (149*2π)/4353 weeks
1503.89641 .01597 (150*2π)/4353 weeks
1513.58121 -.11154 (151*2π)/4353 weeks
1523.55096 -.3054 (152*2π)/4353 weeks
1533.0352 -.59732 (153*2π)/4353 weeks
1543.10813 -1.83101 (154*2π)/4353 weeks
1554.61493 -1.98218 (155*2π)/4353 weeks
1564.87197 -1.12243 (156*2π)/4353 weeks
1574.74219 -.88688 (157*2π)/4353 weeks
1584.69598 -.53827 (158*2π)/4353 weeks
1593.61866 -.50544 (159*2π)/4353 weeks
1603.86622 -1.68971 (160*2π)/4353 weeks
1614.4584 -1.01362 (161*2π)/4353 weeks
1623.37389 -1.14814 (162*2π)/4353 weeks
1633.10429 -2.20413 (163*2π)/4353 weeks
1643.488 -3.42982 (164*2π)/4353 weeks
1654.31561 -4.30575 (165*2π)/4353 weeks
1665.51743 -4.71645 (166*2π)/4353 weeks
1676.85447 -4.18445 (167*2π)/4353 weeks
1687.03341 -3.65495 (168*2π)/4353 weeks
1697.66031 -4.19098 (169*2π)/4353 weeks
1708.84643 -3.53716 (170*2π)/4353 weeks
1719.4963 -2.83215 (171*2π)/4353 weeks
17210.40622 -1.66694 (172*2π)/4353 weeks
17310.19059 .00384 (173*2π)/4353 weeks
1749.09879 1.06524 (174*2π)/4353 weeks
1757.84379 1.10927 (175*2π)/4352 weeks
1767.74609 .44784 (176*2π)/4352 weeks
1778.10322 .9481 (177*2π)/4352 weeks
1787.4174 1.49777 (178*2π)/4352 weeks
1797.07259 1.19339 (179*2π)/4352 weeks
1806.40942 1.25061 (180*2π)/4352 weeks
1815.76849 .55934 (181*2π)/4352 weeks
1826.2183 .19355 (182*2π)/4352 weeks
1836.6107 .4812 (183*2π)/4352 weeks
1846.44665 .37934 (184*2π)/4352 weeks
1856.46356 .4621 (185*2π)/4352 weeks
1866.22672 .62403 (186*2π)/4352 weeks
1875.96975 .42267 (187*2π)/4352 weeks
1886.01986 .26524 (188*2π)/4352 weeks
1895.76581 .6526 (189*2π)/4352 weeks
1905.27429 -.34351 (190*2π)/4352 weeks
1916.12296 -.43167 (191*2π)/4352 weeks
1925.54399 -.15359 (192*2π)/4352 weeks
1935.81269 -.77803 (193*2π)/4352 weeks
1946.34833 -.65755 (194*2π)/4352 weeks
1956.10261 -.63717 (195*2π)/4352 weeks
1966.13041 -.94072 (196*2π)/4352 weeks
1976.55966 -.66264 (197*2π)/4352 weeks
1986.29121 -.55778 (198*2π)/4352 weeks
1996.05428 -1.09747 (199*2π)/4352 weeks
2006.52415 -1.57338 (200*2π)/4352 weeks
2017.3296 -1.62658 (201*2π)/4352 weeks
2027.91543 -1.48297 (202*2π)/4352 weeks
2038.45188 -.29538 (203*2π)/4352 weeks
2047.56667 .40908 (204*2π)/4352 weeks
2057.39406 -.3994 (205*2π)/4352 weeks
2068.01098 -.29134 (206*2π)/4352 weeks
2078.10156 .67701 (207*2π)/4352 weeks
2087.46215 1.47241 (208*2π)/4352 weeks
2096.76683 .93125 (209*2π)/4352 weeks
2106.73655 .42341 (210*2π)/4352 weeks
2117.21894 .24189 (211*2π)/4352 weeks
2127.64835 1.30035 (212*2π)/4352 weeks
2136.48357 2.11893 (213*2π)/4352 weeks
2145.24157 1.64782 (214*2π)/4352 weeks
2155.05506 .47815 (215*2π)/4352 weeks
2165.31584 -.34618 (216*2π)/4352 weeks
2176.20634 -.58572 (217*2π)/4352 weeks
2186.20634 .58572 (218*2π)/4352 weeks
2195.31584 .34618 (219*2π)/4352 weeks
2205.05506 -.47815 (220*2π)/4352 weeks
2215.24157 -1.64782 (221*2π)/4352 weeks
2226.48357 -2.11893 (222*2π)/4352 weeks
2237.64835 -1.30035 (223*2π)/4352 weeks
2247.21894 -.24189 (224*2π)/4352 weeks
2256.73655 -.42341 (225*2π)/4352 weeks
2266.76683 -.93125 (226*2π)/4352 weeks
2277.46215 -1.47241 (227*2π)/4352 weeks
2288.10156 -.67701 (228*2π)/4352 weeks
2298.01098 .29134 (229*2π)/4352 weeks
2307.39406 .3994 (230*2π)/4352 weeks
2317.56667 -.40908 (231*2π)/4352 weeks
2328.45188 .29538 (232*2π)/4352 weeks
2337.91543 1.48297 (233*2π)/4352 weeks
2347.3296 1.62658 (234*2π)/4352 weeks
2356.52415 1.57338 (235*2π)/4352 weeks
2366.05428 1.09747 (236*2π)/4352 weeks
2376.29121 .55778 (237*2π)/4352 weeks
2386.55966 .66264 (238*2π)/4352 weeks
2396.13041 .94072 (239*2π)/4352 weeks
2406.10261 .63717 (240*2π)/4352 weeks
2416.34833 .65755 (241*2π)/4352 weeks
2425.81269 .77803 (242*2π)/4352 weeks
2435.54399 .15359 (243*2π)/4352 weeks
2446.12296 .43167 (244*2π)/4352 weeks
2455.27429 .34351 (245*2π)/4352 weeks
2465.76581 -.6526 (246*2π)/4352 weeks
2476.01986 -.26524 (247*2π)/4352 weeks
2485.96975 -.42267 (248*2π)/4352 weeks
2496.22672 -.62403 (249*2π)/4352 weeks
2506.46356 -.4621 (250*2π)/4352 weeks
2516.44665 -.37934 (251*2π)/4352 weeks
2526.6107 -.4812 (252*2π)/4352 weeks
2536.2183 -.19355 (253*2π)/4352 weeks
2545.76849 -.55934 (254*2π)/4352 weeks
2556.40942 -1.25061 (255*2π)/4352 weeks
2567.07259 -1.19339 (256*2π)/4352 weeks
2577.4174 -1.49777 (257*2π)/4352 weeks
2588.10322 -.9481 (258*2π)/4352 weeks
2597.74609 -.44784 (259*2π)/4352 weeks
2607.84379 -1.10927 (260*2π)/4352 weeks
2619.09879 -1.06524 (261*2π)/4352 weeks
26210.19059 -.00384 (262*2π)/4352 weeks
26310.40622 1.66694 (263*2π)/4352 weeks
2649.4963 2.83215 (264*2π)/4352 weeks
2658.84643 3.53716 (265*2π)/4352 weeks
2667.66031 4.19098 (266*2π)/4352 weeks
2677.03341 3.65495 (267*2π)/4352 weeks
2686.85447 4.18445 (268*2π)/4352 weeks
2695.51743 4.71645 (269*2π)/4352 weeks
2704.31561 4.30575 (270*2π)/4352 weeks
2713.488 3.42982 (271*2π)/4352 weeks
2723.10429 2.20413 (272*2π)/4352 weeks
2733.37389 1.14814 (273*2π)/4352 weeks
2744.4584 1.01362 (274*2π)/4352 weeks
2753.86622 1.68971 (275*2π)/4352 weeks
2763.61866 .50544 (276*2π)/4352 weeks
2774.69598 .53827 (277*2π)/4352 weeks
2784.74219 .88688 (278*2π)/4352 weeks
2794.87197 1.12243 (279*2π)/4352 weeks
2804.61493 1.98218 (280*2π)/4352 weeks
2813.10813 1.83101 (281*2π)/4352 weeks
2823.0352 .59732 (282*2π)/4352 weeks
2833.55096 .3054 (283*2π)/4352 weeks
2843.58121 .11154 (284*2π)/4352 weeks
2853.89641 -.01597 (285*2π)/4352 weeks
2863.86977 .67514 (286*2π)/4352 weeks
2872.97238 .39103 (287*2π)/4352 weeks
2883.3215 -.66771 (288*2π)/4352 weeks
2893.80863 -.55751 (289*2π)/4352 weeks
2903.84549 -.53152 (290*2π)/4352 weeks
2913.97994 -.0871 (291*2π)/4351 weeks
2923.59475 -.16299 (292*2π)/4351 weeks
2933.7926 -.10459 (293*2π)/4351 weeks
2943.05591 .16121 (294*2π)/4351 weeks
2952.52582 -.72576 (295*2π)/4351 weeks
2962.79692 -1.40883 (296*2π)/4351 weeks
2973.25009 -1.55906 (297*2π)/4351 weeks
2983.57694 -1.49961 (298*2π)/4351 weeks
2993.86972 -1.24351 (299*2π)/4351 weeks
3003.89742 -1.15283 (300*2π)/4351 weeks
3013.48323 -.99093 (301*2π)/4351 weeks
3023.44855 -1.16507 (302*2π)/4351 weeks
3033.25643 -.96403 (303*2π)/4351 weeks
3042.8896 -1.55601 (304*2π)/4351 weeks
3053.21121 -1.46268 (305*2π)/4351 weeks
3062.50975 -1.49598 (306*2π)/4351 weeks
3072.13114 -2.02136 (307*2π)/4351 weeks
3082.09976 -3.06076 (308*2π)/4351 weeks
3093.34993 -3.70407 (309*2π)/4351 weeks
3104.03165 -2.54297 (310*2π)/4351 weeks
3112.87983 -2.21603 (311*2π)/4351 weeks
3122.07142 -3.16687 (312*2π)/4351 weeks
3132.04552 -4.48365 (313*2π)/4351 weeks
3143.17698 -5.88821 (314*2π)/4351 weeks
3155.63186 -5.8077 (315*2π)/4351 weeks
3166.54729 -3.79231 (316*2π)/4351 weeks
3175.80166 -3.06651 (317*2π)/4351 weeks
3185.76325 -2.88747 (318*2π)/4351 weeks
3195.45759 -2.556 (319*2π)/4351 weeks
3205.31214 -2.34604 (320*2π)/4351 weeks
3215.14109 -1.09346 (321*2π)/4351 weeks
3223.21194 -.59792 (322*2π)/4351 weeks
3231.81734 -2.45992 (323*2π)/4351 weeks
3242.02438 -3.92042 (324*2π)/4351 weeks
3252.16508 -5.30973 (325*2π)/4351 weeks
3263.65373 -6.51264 (326*2π)/4351 weeks
3274.92473 -5.68624 (327*2π)/4351 weeks
3284.71991 -5.3975 (328*2π)/4351 weeks
3296.07583 -6.20731 (329*2π)/4351 weeks
3307.64211 -5.16788 (330*2π)/4351 weeks
3317.2935 -3.4247 (331*2π)/4351 weeks
3325.64783 -2.56845 (332*2π)/4351 weeks
3334.36271 -3.56903 (333*2π)/4351 weeks
3344.5293 -5.17846 (334*2π)/4351 weeks
3356.02749 -5.69751 (335*2π)/4351 weeks
3367.26529 -4.99692 (336*2π)/4351 weeks
3377.73065 -4.39895 (337*2π)/4351 weeks
3387.55455 -3.39266 (338*2π)/4351 weeks
3396.99054 -2.95539 (339*2π)/4351 weeks
3406.83845 -3.05664 (340*2π)/4351 weeks
3416.71733 -2.40015 (341*2π)/4351 weeks
3425.97675 -2.33152 (342*2π)/4351 weeks
3435.83051 -2.73013 (343*2π)/4351 weeks
3446.22708 -2.7192 (344*2π)/4351 weeks
3455.2327 -2.35192 (345*2π)/4351 weeks
3464.83666 -3.73749 (346*2π)/4351 weeks
3475.96092 -4.18626 (347*2π)/4351 weeks
3486.64308 -3.43224 (348*2π)/4351 weeks
3496.6947 -2.50133 (349*2π)/4351 weeks
3506.18072 -2.4412 (350*2π)/4351 weeks
3516.47886 -2.78656 (351*2π)/4351 weeks
3526.59905 -2.36574 (352*2π)/4351 weeks
3536.67158 -1.51181 (353*2π)/4351 weeks
3545.67704 -.09715 (354*2π)/4351 weeks
3554.34657 -.06275 (355*2π)/4351 weeks
3563.94641 -.37368 (356*2π)/4351 weeks
3573.60616 -.12686 (357*2π)/4351 weeks
3582.39625 .40392 (358*2π)/4351 weeks
359.36517 .23056 (359*2π)/4351 weeks
360-2.85432 -1.10464 (360*2π)/4351 weeks
361-3.72025 -4.87083 (361*2π)/4351 weeks
362-2.39949 -7.13391 (362*2π)/4351 weeks
363-1.39506 -8.79392 (363*2π)/4351 weeks
364.17261 -10.14658 (364*2π)/4351 weeks
3651.61591 -10.55325 (365*2π)/4351 weeks
3663.05693 -11.35694 (366*2π)/4351 weeks
3675.09782 -11.72972 (367*2π)/4351 weeks
3686.96458 -9.59977 (368*2π)/4351 weeks
3695.57878 -7.91958 (369*2π)/4351 weeks
3705.21748 -9.49521 (370*2π)/4351 weeks
3715.93292 -9.30875 (371*2π)/4351 weeks
3725.89233 -9.97232 (372*2π)/4351 weeks
3738.86139 -10.2101 (373*2π)/4351 weeks
3749.70068 -6.94106 (374*2π)/4351 weeks
3756.04996 -6.30305 (375*2π)/4351 weeks
3765.9018 -9.2828 (376*2π)/4351 weeks
3778.74384 -9.91039 (377*2π)/4351 weeks
37810.36705 -8.96195 (378*2π)/4351 weeks
37912.12311 -6.65551 (379*2π)/4351 weeks
38012.24237 -2.62516 (380*2π)/4351 weeks
3818.10592 -.71682 (381*2π)/4351 weeks
3826.81624 -2.63408 (382*2π)/4351 weeks
3836.3324 -1.45063 (383*2π)/4351 weeks
3844.96144 -1.07254 (384*2π)/4351 weeks
3853.66805 -1.19598 (385*2π)/4351 weeks
386.9061 -.49223 (386*2π)/4351 weeks
387-2.52904 -2.95885 (387*2π)/4351 weeks
388-2.66682 -5.71936 (388*2π)/4351 weeks
389-3.75722 -7.41865 (389*2π)/4351 weeks
390-4.0245 -10.67762 (390*2π)/4351 weeks
391-2.5125 -13.86207 (391*2π)/4351 weeks
392-.6055 -15.55946 (392*2π)/4351 weeks
3931.8873 -16.23458 (393*2π)/4351 weeks
3943.34146 -16.08461 (394*2π)/4351 weeks
3954.50291 -15.84074 (395*2π)/4351 weeks
3964.79697 -15.16457 (396*2π)/4351 weeks
3975.23247 -14.49679 (397*2π)/4351 weeks
3983.97514 -15.4992 (398*2π)/4351 weeks
3994.29942 -17.20849 (399*2π)/4351 weeks
4004.87279 -18.01606 (400*2π)/4351 weeks
4016.39325 -20.29573 (401*2π)/4351 weeks
40210.52321 -20.4838 (402*2π)/4351 weeks
40310.90952 -17.63698 (403*2π)/4351 weeks
4049.9592 -18.27856 (404*2π)/4351 weeks
40511.64063 -19.21109 (405*2π)/4351 weeks
40613.69892 -19.0051 (406*2π)/4351 weeks
40715.92155 -18.8029 (407*2π)/4351 weeks
40819.51348 -16.04108 (408*2π)/4351 weeks
40918.01735 -10.79244 (409*2π)/4351 weeks
41014.36288 -10.39116 (410*2π)/4351 weeks
41114.73824 -9.89322 (411*2π)/4351 weeks
41213.27006 -6.82723 (412*2π)/4351 weeks
41310.23818 -7.40273 (413*2π)/4351 weeks
41410.24889 -7.01189 (414*2π)/4351 weeks
4154.19101 -5.92814 (415*2π)/4351 weeks
416-.43654 -9.31626 (416*2π)/4351 weeks
417-5.25583 -12.81268 (417*2π)/4351 weeks
418-5.55138 -19.85286 (418*2π)/4351 weeks
419-3.54045 -24.69978 (419*2π)/4351 weeks
420.25113 -30.08045 (420*2π)/4351 weeks
4211.46533 -28.76258 (421*2π)/4351 weeks
422-2.91028 -34.45039 (422*2π)/4351 weeks
423.54297 -39.37506 (423*2π)/4351 weeks
4241.35704 -44.19798 (424*2π)/4351 weeks
4256.78378 -52.34272 (425*2π)/4351 weeks
42610.86765 -48.88645 (426*2π)/4351 weeks
4273.60226 -55.67364 (427*2π)/4351 weeks
42810.13046 -80.04288 (428*2π)/4351 weeks
42934.00692 -91.24303 (429*2π)/4351 weeks
43052.86106 -86.19865 (430*2π)/4351 weeks
43154.51239 -84.42693 (431*2π)/4351 weeks
43260.66936 -105.0112 (432*2π)/4351 weeks
433103.7799 -127.1464 (433*2π)/4351 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.