Back to list of Stocks    See Also: Seasonal Analysis of ERYGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of ERY (DIREXION DAILY ENERGY BEAR 3X SHARES DIREXION DAILY ENERGY BEAR 3X SHARES)


ERY (DIREXION DAILY ENERGY BEAR 3X SHARES DIREXION DAILY ENERGY BEAR 3X SHARES) appears to have interesting cyclic behaviour every 43 weeks (47.1935*sine), 47 weeks (46.0529*sine), and 16 weeks (18.2739*cosine).

ERY (DIREXION DAILY ENERGY BEAR 3X SHARES DIREXION DAILY ENERGY BEAR 3X SHARES) has an average price of 155.86 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 11/19/2008 to 11/6/2017 for ERY (DIREXION DAILY ENERGY BEAR 3X SHARES DIREXION DAILY ENERGY BEAR 3X SHARES), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0155.8609   0 
1189.4484 123.4305 (1*2π)/469469 weeks
2102.9959 122.2548 (2*2π)/469235 weeks
363.78671 105.7319 (3*2π)/469156 weeks
453.02447 81.25354 (4*2π)/469117 weeks
552.22605 75.61032 (5*2π)/46994 weeks
640.44776 82.28398 (6*2π)/46978 weeks
719.00789 80.94912 (7*2π)/46967 weeks
82.48102 65.16454 (8*2π)/46959 weeks
96.20348 47.98086 (9*2π)/46952 weeks
1011.25841 46.05293 (10*2π)/46947 weeks
114.18393 47.1935 (11*2π)/46943 weeks
121.02476 40.09028 (12*2π)/46939 weeks
13.27928 36.30643 (13*2π)/46936 weeks
14-2.73837 32.11467 (14*2π)/46934 weeks
151.06374 26.50089 (15*2π)/46931 weeks
16.86846 27.57473 (16*2π)/46929 weeks
17-3.69858 24.0264 (17*2π)/46928 weeks
18-5.00994 20.60516 (18*2π)/46926 weeks
19-5.30052 15.21377 (19*2π)/46925 weeks
20-1.40325 9.27342 (20*2π)/46923 weeks
211.15294 6.38619 (21*2π)/46922 weeks
225.82373 4.70405 (22*2π)/46921 weeks
239.05144 7.8651 (23*2π)/46920 weeks
2410.00902 7.00423 (24*2π)/46920 weeks
2513.22136 6.9261 (25*2π)/46919 weeks
2613.73484 9.33391 (26*2π)/46918 weeks
2713.34857 9.57023 (27*2π)/46917 weeks
2816.61483 9.957 (28*2π)/46917 weeks
2918.27386 14.29314 (29*2π)/46916 weeks
3015.22009 17.29814 (30*2π)/46916 weeks
3112.95363 17.65204 (31*2π)/46915 weeks
3211.37861 18.09956 (32*2π)/46915 weeks
339.85929 17.69113 (33*2π)/46914 weeks
349.64927 16.25297 (34*2π)/46914 weeks
3510.60503 17.23 (35*2π)/46913 weeks
368.158 19.62897 (36*2π)/46913 weeks
375.3043 18.21994 (37*2π)/46913 weeks
384.62837 16.35254 (38*2π)/46912 weeks
393.80513 15.65523 (39*2π)/46912 weeks
403.70707 14.23175 (40*2π)/46912 weeks
414.92256 13.48197 (41*2π)/46911 weeks
424.48623 14.0861 (42*2π)/46911 weeks
434.36734 14.61166 (43*2π)/46911 weeks
443.38113 14.8365 (44*2π)/46911 weeks
452.20042 14.91848 (45*2π)/46910 weeks
46.21427 14.79925 (46*2π)/46910 weeks
47-1.61595 13.40123 (47*2π)/46910 weeks
48-3.46641 11.46067 (48*2π)/46910 weeks
49-3.86144 8.61885 (49*2π)/46910 weeks
50-2.93338 6.11081 (50*2π)/4699 weeks
51-2.47723 4.82186 (51*2π)/4699 weeks
52-1.85552 1.85988 (52*2π)/4699 weeks
531.35204 .38339 (53*2π)/4699 weeks
543.44225 1.17052 (54*2π)/4699 weeks
554.60274 .9809 (55*2π)/4699 weeks
565.7284 1.31547 (56*2π)/4698 weeks
576.42289 2.43131 (57*2π)/4698 weeks
586.76103 .96848 (58*2π)/4698 weeks
5910.42303 1.46163 (59*2π)/4698 weeks
6011.60789 5.29491 (60*2π)/4698 weeks
6110.59964 7.68834 (61*2π)/4698 weeks
628.91601 8.61214 (62*2π)/4698 weeks
636.98513 9.37774 (63*2π)/4697 weeks
645.05716 7.57375 (64*2π)/4697 weeks
656.42382 5.25048 (65*2π)/4697 weeks
669.11338 7.29163 (66*2π)/4697 weeks
677.83521 9.81309 (67*2π)/4697 weeks
685.42842 9.13134 (68*2π)/4697 weeks
695.50218 8.65469 (69*2π)/4697 weeks
704.95833 8.86246 (70*2π)/4697 weeks
714.87692 7.44134 (71*2π)/4697 weeks
726.41449 8.36987 (72*2π)/4697 weeks
735.51091 10.54274 (73*2π)/4696 weeks
743.29732 10.64795 (74*2π)/4696 weeks
751.84189 10.23899 (75*2π)/4696 weeks
76.98714 9.7864 (76*2π)/4696 weeks
77-.44694 9.06915 (77*2π)/4696 weeks
78-1.5516 7.66197 (78*2π)/4696 weeks
79-2.39129 6.19152 (79*2π)/4696 weeks
80-3.49394 3.72592 (80*2π)/4696 weeks
81-2.33767 .56965 (81*2π)/4696 weeks
82.41433 -.21776 (82*2π)/4696 weeks
832.19916 -.4042 (83*2π)/4696 weeks
843.23972 .00984 (84*2π)/4696 weeks
853.49906 .34684 (85*2π)/4696 weeks
863.78472 .30204 (86*2π)/4695 weeks
874.9088 .13442 (87*2π)/4695 weeks
886.26036 .8279 (88*2π)/4695 weeks
896.23868 1.72185 (89*2π)/4695 weeks
905.94001 2.20561 (90*2π)/4695 weeks
915.56254 2.65038 (91*2π)/4695 weeks
925.8222 2.38358 (92*2π)/4695 weeks
936.42526 2.63342 (93*2π)/4695 weeks
946.18531 3.29016 (94*2π)/4695 weeks
955.41026 3.88342 (95*2π)/4695 weeks
964.46067 3.42584 (96*2π)/4695 weeks
974.83806 2.20629 (97*2π)/4695 weeks
985.77785 2.40072 (98*2π)/4695 weeks
995.38263 2.59134 (99*2π)/4695 weeks
1005.42376 2.3203 (100*2π)/4695 weeks
1016.04199 2.1642 (101*2π)/4695 weeks
1026.50222 2.65003 (102*2π)/4695 weeks
1036.32724 2.738 (103*2π)/4695 weeks
1046.73663 2.79568 (104*2π)/4695 weeks
1057.0959 3.39406 (105*2π)/4694 weeks
1066.89428 4.37363 (106*2π)/4694 weeks
1076.62433 4.97285 (107*2π)/4694 weeks
1085.4215 5.29741 (108*2π)/4694 weeks
1094.12172 4.65152 (109*2π)/4694 weeks
1104.06608 3.27988 (110*2π)/4694 weeks
1115.17995 2.40923 (111*2π)/4694 weeks
1126.70706 2.98709 (112*2π)/4694 weeks
1137.15069 4.32587 (113*2π)/4694 weeks
1145.9271 5.63765 (114*2π)/4694 weeks
1154.43589 5.58232 (115*2π)/4694 weeks
1164.73225 5.11073 (116*2π)/4694 weeks
1174.38625 5.74123 (117*2π)/4694 weeks
1182.6212 5.56127 (118*2π)/4694 weeks
1191.78138 4.26427 (119*2π)/4694 weeks
1201.70548 3.36284 (120*2π)/4694 weeks
1211.74159 1.91457 (121*2π)/4694 weeks
1223.37378 .53029 (122*2π)/4694 weeks
1234.8867 1.10633 (123*2π)/4694 weeks
1244.91792 2.17837 (124*2π)/4694 weeks
1255.06407 2.35883 (125*2π)/4694 weeks
1265.32923 2.57752 (126*2π)/4694 weeks
1275.27257 2.81353 (127*2π)/4694 weeks
1285.79229 3.16432 (128*2π)/4694 weeks
1295.77558 4.91122 (129*2π)/4694 weeks
1303.92612 5.86087 (130*2π)/4694 weeks
1312.36706 4.86361 (131*2π)/4694 weeks
1321.8907 3.52474 (132*2π)/4694 weeks
1332.06962 2.49021 (133*2π)/4694 weeks
1342.94886 1.98847 (134*2π)/4694 weeks
1353.81342 2.68783 (135*2π)/4693 weeks
1362.93546 3.47496 (136*2π)/4693 weeks
1371.941 2.76228 (137*2π)/4693 weeks
1381.99341 1.88128 (138*2π)/4693 weeks
1392.32577 1.43 (139*2π)/4693 weeks
1402.95586 1.25956 (140*2π)/4693 weeks
1412.78462 1.49798 (141*2π)/4693 weeks
1422.78785 .9178 (142*2π)/4693 weeks
1433.18493 1.04388 (143*2π)/4693 weeks
1443.15916 1.03702 (144*2π)/4693 weeks
1453.4309 .87433 (145*2π)/4693 weeks
1463.5017 1.20611 (146*2π)/4693 weeks
1473.61134 1.37471 (147*2π)/4693 weeks
1483.33474 1.41255 (148*2π)/4693 weeks
1492.98562 1.39925 (149*2π)/4693 weeks
1502.5348 1.22681 (150*2π)/4693 weeks
1512.33861 .63335 (151*2π)/4693 weeks
1522.82708 -.13608 (152*2π)/4693 weeks
1533.51069 .04365 (153*2π)/4693 weeks
1543.33904 .21363 (154*2π)/4693 weeks
1553.59771 .04652 (155*2π)/4693 weeks
1563.75002 .45708 (156*2π)/4693 weeks
1573.57378 .39166 (157*2π)/4693 weeks
1583.34815 .56842 (158*2π)/4693 weeks
1592.66425 .2889 (159*2π)/4693 weeks
1603.08435 -.59827 (160*2π)/4693 weeks
1613.81457 -.42026 (161*2π)/4693 weeks
1623.48509 -.01069 (162*2π)/4693 weeks
1633.26732 -.14726 (163*2π)/4693 weeks
1643.26771 -.25392 (164*2π)/4693 weeks
1652.8019 -.57445 (165*2π)/4693 weeks
1662.84783 -1.6459 (166*2π)/4693 weeks
1674.16652 -1.90793 (167*2π)/4693 weeks
1684.56016 -1.12201 (168*2π)/4693 weeks
1694.41943 -.85302 (169*2π)/4693 weeks
1704.40117 -.64997 (170*2π)/4693 weeks
1713.8591 -.19334 (171*2π)/4693 weeks
1723.27072 -1.14326 (172*2π)/4693 weeks
1734.12957 -1.52311 (173*2π)/4693 weeks
1743.76253 -.7907 (174*2π)/4693 weeks
1752.95759 -1.41003 (175*2π)/4693 weeks
1762.84818 -2.309 (176*2π)/4693 weeks
1773.35749 -3.29902 (177*2π)/4693 weeks
1784.12773 -4.05344 (178*2π)/4693 weeks
1795.15752 -4.38677 (179*2π)/4693 weeks
1806.33971 -3.92738 (180*2π)/4693 weeks
1816.55048 -3.41526 (181*2π)/4693 weeks
1826.83831 -3.83807 (182*2π)/4693 weeks
1838.01731 -3.48948 (183*2π)/4693 weeks
1848.61575 -2.83531 (184*2π)/4693 weeks
1859.34914 -2.18404 (185*2π)/4693 weeks
1869.65481 -.70655 (186*2π)/4693 weeks
1879.07726 .56801 (187*2π)/4693 weeks
1888.02843 1.12396 (188*2π)/4692 weeks
1897.0879 .77596 (189*2π)/4692 weeks
1907.28549 .38307 (190*2π)/4692 weeks
1917.44076 .99867 (191*2π)/4692 weeks
1926.79273 1.4007 (192*2π)/4692 weeks
1936.56627 1.11335 (193*2π)/4692 weeks
1945.96922 1.1729 (194*2π)/4692 weeks
1955.34059 .70865 (195*2π)/4692 weeks
1965.76402 .24662 (196*2π)/4692 weeks
1976.20577 .24157 (197*2π)/4692 weeks
1985.93163 .34885 (198*2π)/4692 weeks
1995.97084 .37031 (199*2π)/4692 weeks
2005.92061 .53136 (200*2π)/4692 weeks
2015.62898 .53496 (201*2π)/4692 weeks
2025.53294 .32207 (202*2π)/4692 weeks
2035.64018 .2822 (203*2π)/4692 weeks
2045.1056 .5563 (204*2π)/4692 weeks
2054.99555 -.43571 (205*2π)/4692 weeks
2065.70169 -.35338 (206*2π)/4692 weeks
2075.14298 -.139 (207*2π)/4692 weeks
2085.36205 -.70456 (208*2π)/4692 weeks
2095.85478 -.71365 (209*2π)/4692 weeks
2105.64122 -.53749 (210*2π)/4692 weeks
2115.61331 -.70881 (211*2π)/4692 weeks
2126.08683 -.80912 (212*2π)/4692 weeks
2135.95005 -.53917 (213*2π)/4692 weeks
2145.62138 -.66413 (214*2π)/4692 weeks
2155.76413 -1.23982 (215*2π)/4692 weeks
2166.26298 -1.55789 (216*2π)/4692 weeks
2176.91646 -1.39251 (217*2π)/4692 weeks
2187.57077 -1.25982 (218*2π)/4692 weeks
2197.79354 -.13343 (219*2π)/4692 weeks
2206.96913 .37417 (220*2π)/4692 weeks
2216.85379 -.36453 (221*2π)/4692 weeks
2227.36465 -.30168 (222*2π)/4692 weeks
2237.60444 .53608 (223*2π)/4692 weeks
2247.26362 1.20611 (224*2π)/4692 weeks
2256.31756 .95245 (225*2π)/4692 weeks
2266.12614 .5619 (226*2π)/4692 weeks
2276.39952 .29391 (227*2π)/4692 weeks
2287.0862 .54317 (228*2π)/4692 weeks
2296.80368 1.64853 (229*2π)/4692 weeks
2305.59756 1.88753 (230*2π)/4692 weeks
2314.63062 1.22402 (231*2π)/4692 weeks
2324.69247 .35406 (232*2π)/4692 weeks
2335.01413 -.36937 (233*2π)/4692 weeks
2345.80045 -.52766 (234*2π)/4692 weeks
2355.80045 .52766 (235*2π)/4692 weeks
2365.01413 .36937 (236*2π)/4692 weeks
2374.69247 -.35406 (237*2π)/4692 weeks
2384.63062 -1.22402 (238*2π)/4692 weeks
2395.59756 -1.88753 (239*2π)/4692 weeks
2406.80368 -1.64853 (240*2π)/4692 weeks
2417.0862 -.54317 (241*2π)/4692 weeks
2426.39952 -.29391 (242*2π)/4692 weeks
2436.12614 -.5619 (243*2π)/4692 weeks
2446.31756 -.95245 (244*2π)/4692 weeks
2457.26362 -1.20611 (245*2π)/4692 weeks
2467.60444 -.53608 (246*2π)/4692 weeks
2477.36465 .30168 (247*2π)/4692 weeks
2486.85379 .36453 (248*2π)/4692 weeks
2496.96913 -.37417 (249*2π)/4692 weeks
2507.79354 .13343 (250*2π)/4692 weeks
2517.57077 1.25982 (251*2π)/4692 weeks
2526.91646 1.39251 (252*2π)/4692 weeks
2536.26298 1.55789 (253*2π)/4692 weeks
2545.76413 1.23982 (254*2π)/4692 weeks
2555.62138 .66413 (255*2π)/4692 weeks
2565.95005 .53917 (256*2π)/4692 weeks
2576.08683 .80912 (257*2π)/4692 weeks
2585.61331 .70881 (258*2π)/4692 weeks
2595.64122 .53749 (259*2π)/4692 weeks
2605.85478 .71365 (260*2π)/4692 weeks
2615.36205 .70456 (261*2π)/4692 weeks
2625.14298 .139 (262*2π)/4692 weeks
2635.70169 .35338 (263*2π)/4692 weeks
2644.99555 .43571 (264*2π)/4692 weeks
2655.1056 -.5563 (265*2π)/4692 weeks
2665.64018 -.2822 (266*2π)/4692 weeks
2675.53294 -.32207 (267*2π)/4692 weeks
2685.62898 -.53496 (268*2π)/4692 weeks
2695.92061 -.53136 (269*2π)/4692 weeks
2705.97084 -.37031 (270*2π)/4692 weeks
2715.93163 -.34885 (271*2π)/4692 weeks
2726.20577 -.24157 (272*2π)/4692 weeks
2735.76402 -.24662 (273*2π)/4692 weeks
2745.34059 -.70865 (274*2π)/4692 weeks
2755.96922 -1.1729 (275*2π)/4692 weeks
2766.56627 -1.11335 (276*2π)/4692 weeks
2776.79273 -1.4007 (277*2π)/4692 weeks
2787.44076 -.99867 (278*2π)/4692 weeks
2797.28549 -.38307 (279*2π)/4692 weeks
2807.0879 -.77596 (280*2π)/4692 weeks
2818.02843 -1.12396 (281*2π)/4692 weeks
2829.07726 -.56801 (282*2π)/4692 weeks
2839.65481 .70655 (283*2π)/4692 weeks
2849.34914 2.18404 (284*2π)/4692 weeks
2858.61575 2.83531 (285*2π)/4692 weeks
2868.01731 3.48948 (286*2π)/4692 weeks
2876.83831 3.83807 (287*2π)/4692 weeks
2886.55048 3.41526 (288*2π)/4692 weeks
2896.33971 3.92738 (289*2π)/4692 weeks
2905.15752 4.38677 (290*2π)/4692 weeks
2914.12773 4.05344 (291*2π)/4692 weeks
2923.35749 3.29902 (292*2π)/4692 weeks
2932.84818 2.309 (293*2π)/4692 weeks
2942.95759 1.41003 (294*2π)/4692 weeks
2953.76253 .7907 (295*2π)/4692 weeks
2964.12957 1.52311 (296*2π)/4692 weeks
2973.27072 1.14326 (297*2π)/4692 weeks
2983.8591 .19334 (298*2π)/4692 weeks
2994.40117 .64997 (299*2π)/4692 weeks
3004.41943 .85302 (300*2π)/4692 weeks
3014.56016 1.12201 (301*2π)/4692 weeks
3024.16652 1.90793 (302*2π)/4692 weeks
3032.84783 1.6459 (303*2π)/4692 weeks
3042.8019 .57445 (304*2π)/4692 weeks
3053.26771 .25392 (305*2π)/4692 weeks
3063.26732 .14726 (306*2π)/4692 weeks
3073.48509 .01069 (307*2π)/4692 weeks
3083.81457 .42026 (308*2π)/4692 weeks
3093.08435 .59827 (309*2π)/4692 weeks
3102.66425 -.2889 (310*2π)/4692 weeks
3113.34815 -.56842 (311*2π)/4692 weeks
3123.57378 -.39166 (312*2π)/4692 weeks
3133.75002 -.45708 (313*2π)/4691 weeks
3143.59771 -.04652 (314*2π)/4691 weeks
3153.33904 -.21363 (315*2π)/4691 weeks
3163.51069 -.04365 (316*2π)/4691 weeks
3172.82708 .13608 (317*2π)/4691 weeks
3182.33861 -.63335 (318*2π)/4691 weeks
3192.5348 -1.22681 (319*2π)/4691 weeks
3202.98562 -1.39925 (320*2π)/4691 weeks
3213.33474 -1.41255 (321*2π)/4691 weeks
3223.61134 -1.37471 (322*2π)/4691 weeks
3233.5017 -1.20611 (323*2π)/4691 weeks
3243.4309 -.87433 (324*2π)/4691 weeks
3253.15916 -1.03702 (325*2π)/4691 weeks
3263.18493 -1.04388 (326*2π)/4691 weeks
3272.78785 -.9178 (327*2π)/4691 weeks
3282.78462 -1.49798 (328*2π)/4691 weeks
3292.95586 -1.25956 (329*2π)/4691 weeks
3302.32577 -1.43 (330*2π)/4691 weeks
3311.99341 -1.88128 (331*2π)/4691 weeks
3321.941 -2.76228 (332*2π)/4691 weeks
3332.93546 -3.47496 (333*2π)/4691 weeks
3343.81342 -2.68783 (334*2π)/4691 weeks
3352.94886 -1.98847 (335*2π)/4691 weeks
3362.06962 -2.49021 (336*2π)/4691 weeks
3371.8907 -3.52474 (337*2π)/4691 weeks
3382.36706 -4.86361 (338*2π)/4691 weeks
3393.92612 -5.86087 (339*2π)/4691 weeks
3405.77558 -4.91122 (340*2π)/4691 weeks
3415.79229 -3.16432 (341*2π)/4691 weeks
3425.27257 -2.81353 (342*2π)/4691 weeks
3435.32923 -2.57752 (343*2π)/4691 weeks
3445.06407 -2.35883 (344*2π)/4691 weeks
3454.91792 -2.17837 (345*2π)/4691 weeks
3464.8867 -1.10633 (346*2π)/4691 weeks
3473.37378 -.53029 (347*2π)/4691 weeks
3481.74159 -1.91457 (348*2π)/4691 weeks
3491.70548 -3.36284 (349*2π)/4691 weeks
3501.78138 -4.26427 (350*2π)/4691 weeks
3512.6212 -5.56127 (351*2π)/4691 weeks
3524.38625 -5.74123 (352*2π)/4691 weeks
3534.73225 -5.11073 (353*2π)/4691 weeks
3544.43589 -5.58232 (354*2π)/4691 weeks
3555.9271 -5.63765 (355*2π)/4691 weeks
3567.15069 -4.32587 (356*2π)/4691 weeks
3576.70706 -2.98709 (357*2π)/4691 weeks
3585.17995 -2.40923 (358*2π)/4691 weeks
3594.06608 -3.27988 (359*2π)/4691 weeks
3604.12172 -4.65152 (360*2π)/4691 weeks
3615.4215 -5.29741 (361*2π)/4691 weeks
3626.62433 -4.97285 (362*2π)/4691 weeks
3636.89428 -4.37363 (363*2π)/4691 weeks
3647.0959 -3.39406 (364*2π)/4691 weeks
3656.73663 -2.79568 (365*2π)/4691 weeks
3666.32724 -2.738 (366*2π)/4691 weeks
3676.50222 -2.65003 (367*2π)/4691 weeks
3686.04199 -2.1642 (368*2π)/4691 weeks
3695.42376 -2.3203 (369*2π)/4691 weeks
3705.38263 -2.59134 (370*2π)/4691 weeks
3715.77785 -2.40072 (371*2π)/4691 weeks
3724.83806 -2.20629 (372*2π)/4691 weeks
3734.46067 -3.42584 (373*2π)/4691 weeks
3745.41026 -3.88342 (374*2π)/4691 weeks
3756.18531 -3.29016 (375*2π)/4691 weeks
3766.42526 -2.63342 (376*2π)/4691 weeks
3775.8222 -2.38358 (377*2π)/4691 weeks
3785.56254 -2.65038 (378*2π)/4691 weeks
3795.94001 -2.20561 (379*2π)/4691 weeks
3806.23868 -1.72185 (380*2π)/4691 weeks
3816.26036 -.8279 (381*2π)/4691 weeks
3824.9088 -.13442 (382*2π)/4691 weeks
3833.78472 -.30204 (383*2π)/4691 weeks
3843.49906 -.34684 (384*2π)/4691 weeks
3853.23972 -.00984 (385*2π)/4691 weeks
3862.19916 .4042 (386*2π)/4691 weeks
387.41433 .21776 (387*2π)/4691 weeks
388-2.33767 -.56965 (388*2π)/4691 weeks
389-3.49394 -3.72592 (389*2π)/4691 weeks
390-2.39129 -6.19152 (390*2π)/4691 weeks
391-1.5516 -7.66197 (391*2π)/4691 weeks
392-.44694 -9.06915 (392*2π)/4691 weeks
393.98714 -9.7864 (393*2π)/4691 weeks
3941.84189 -10.23899 (394*2π)/4691 weeks
3953.29732 -10.64795 (395*2π)/4691 weeks
3965.51091 -10.54274 (396*2π)/4691 weeks
3976.41449 -8.36987 (397*2π)/4691 weeks
3984.87692 -7.44134 (398*2π)/4691 weeks
3994.95833 -8.86246 (399*2π)/4691 weeks
4005.50218 -8.65469 (400*2π)/4691 weeks
4015.42842 -9.13134 (401*2π)/4691 weeks
4027.83521 -9.81309 (402*2π)/4691 weeks
4039.11338 -7.29163 (403*2π)/4691 weeks
4046.42382 -5.25048 (404*2π)/4691 weeks
4055.05716 -7.57375 (405*2π)/4691 weeks
4066.98513 -9.37774 (406*2π)/4691 weeks
4078.91601 -8.61214 (407*2π)/4691 weeks
40810.59964 -7.68834 (408*2π)/4691 weeks
40911.60789 -5.29491 (409*2π)/4691 weeks
41010.42303 -1.46163 (410*2π)/4691 weeks
4116.76103 -.96848 (411*2π)/4691 weeks
4126.42289 -2.43131 (412*2π)/4691 weeks
4135.7284 -1.31547 (413*2π)/4691 weeks
4144.60274 -.9809 (414*2π)/4691 weeks
4153.44225 -1.17052 (415*2π)/4691 weeks
4161.35204 -.38339 (416*2π)/4691 weeks
417-1.85552 -1.85988 (417*2π)/4691 weeks
418-2.47723 -4.82186 (418*2π)/4691 weeks
419-2.93338 -6.11081 (419*2π)/4691 weeks
420-3.86144 -8.61885 (420*2π)/4691 weeks
421-3.46641 -11.46067 (421*2π)/4691 weeks
422-1.61595 -13.40123 (422*2π)/4691 weeks
423.21427 -14.79925 (423*2π)/4691 weeks
4242.20042 -14.91848 (424*2π)/4691 weeks
4253.38113 -14.8365 (425*2π)/4691 weeks
4264.36734 -14.61166 (426*2π)/4691 weeks
4274.48623 -14.0861 (427*2π)/4691 weeks
4284.92256 -13.48197 (428*2π)/4691 weeks
4293.70707 -14.23175 (429*2π)/4691 weeks
4303.80513 -15.65523 (430*2π)/4691 weeks
4314.62837 -16.35254 (431*2π)/4691 weeks
4325.3043 -18.21994 (432*2π)/4691 weeks
4338.158 -19.62897 (433*2π)/4691 weeks
43410.60503 -17.23 (434*2π)/4691 weeks
4359.64927 -16.25297 (435*2π)/4691 weeks
4369.85929 -17.69113 (436*2π)/4691 weeks
43711.37861 -18.09956 (437*2π)/4691 weeks
43812.95363 -17.65204 (438*2π)/4691 weeks
43915.22009 -17.29814 (439*2π)/4691 weeks
44018.27386 -14.29314 (440*2π)/4691 weeks
44116.61483 -9.957 (441*2π)/4691 weeks
44213.34857 -9.57023 (442*2π)/4691 weeks
44313.73484 -9.33391 (443*2π)/4691 weeks
44413.22136 -6.9261 (444*2π)/4691 weeks
44510.00902 -7.00423 (445*2π)/4691 weeks
4469.05144 -7.8651 (446*2π)/4691 weeks
4475.82373 -4.70405 (447*2π)/4691 weeks
4481.15294 -6.38619 (448*2π)/4691 weeks
449-1.40325 -9.27342 (449*2π)/4691 weeks
450-5.30052 -15.21377 (450*2π)/4691 weeks
451-5.00994 -20.60516 (451*2π)/4691 weeks
452-3.69858 -24.0264 (452*2π)/4691 weeks
453.86846 -27.57473 (453*2π)/4691 weeks
4541.06374 -26.50089 (454*2π)/4691 weeks
455-2.73837 -32.11467 (455*2π)/4691 weeks
456.27928 -36.30643 (456*2π)/4691 weeks
4571.02476 -40.09028 (457*2π)/4691 weeks
4584.18393 -47.1935 (458*2π)/4691 weeks
45911.25841 -46.05293 (459*2π)/4691 weeks
4606.20348 -47.98086 (460*2π)/4691 weeks
4612.48102 -65.16454 (461*2π)/4691 weeks
46219.00789 -80.94912 (462*2π)/4691 weeks
46340.44776 -82.28398 (463*2π)/4691 weeks
46452.22605 -75.61032 (464*2π)/4691 weeks
46553.02447 -81.25354 (465*2π)/4691 weeks
46663.78671 -105.7319 (466*2π)/4691 weeks
467102.9959 -122.2548 (467*2π)/4691 weeks



Back to list of Stocks