Back to list of Stocks    See Also: Seasonal Analysis of ENPTGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of ENPT (Enerpulse Technologies)

ENPT (Enerpulse Technologies) appears to have interesting cyclic behaviour every 7 weeks (.0099*cosine), 2 weeks (.0096*cosine), and 2 weeks (.0096*cosine).

ENPT (Enerpulse Technologies) has an average price of .02 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 7/15/2014 to 4/16/2018 for ENPT (Enerpulse Technologies), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.01589   0
1.00985 .00709 (1*2π)/119119 weeks
2.00826 .00198 (2*2π)/11960 weeks
3.01047 .00043 (3*2π)/11940 weeks
4.00777 .0025 (4*2π)/11930 weeks
5.00958 .00039 (5*2π)/11924 weeks
6.00786 .00038 (6*2π)/11920 weeks
7.00955 .00083 (7*2π)/11917 weeks
8.0086 -.00021 (8*2π)/11915 weeks
9.00937 .00062 (9*2π)/11913 weeks
10.00935 -.00005 (10*2π)/11912 weeks
11.00944 .00115 (11*2π)/11911 weeks
12.00862 .0006 (12*2π)/11910 weeks
13.00835 .00049 (13*2π)/1199 weeks
14.00873   (14*2π)/1199 weeks
15.00853 -.00066 (15*2π)/1198 weeks
16.00985 .00019 (16*2π)/1197 weeks
17.00932 -.00009 (17*2π)/1197 weeks
18.00918 .00108 (18*2π)/1197 weeks
19.00864 .00012 (19*2π)/1196 weeks
20.00873   (20*2π)/1196 weeks
21.00899 .00019 (21*2π)/1196 weeks
22.00868 -.00027 (22*2π)/1195 weeks
23.00946 -.00023 (23*2π)/1195 weeks
24.00899 .00042 (24*2π)/1195 weeks
25.00914 -.00027 (25*2π)/1195 weeks
26.0091 .00027 (26*2π)/1195 weeks
27.00897 -.00016 (27*2π)/1194 weeks
28.00959 .00003 (28*2π)/1194 weeks
29.00868 .00043 (29*2π)/1194 weeks
30.00957 -.00025 (30*2π)/1194 weeks
31.00876 .0008 (31*2π)/1194 weeks
32.00897 -.00042 (32*2π)/1194 weeks
33.00912 .00051 (33*2π)/1194 weeks
34.00884 -.0003 (34*2π)/1194 weeks
35.00929 .00033 (35*2π)/1193 weeks
36.00857 .0001 (36*2π)/1193 weeks
37.00939 -.00033 (37*2π)/1193 weeks
38.0086 .00076 (38*2π)/1193 weeks
39.00883 -.0008 (39*2π)/1193 weeks
40.00914 .00004 (40*2π)/1193 weeks
41.00926 -.00029 (41*2π)/1193 weeks
42.00938 .00014 (42*2π)/1193 weeks
43.00875 .00028 (43*2π)/1193 weeks
44.00913 -.00033 (44*2π)/1193 weeks
45.00902 .0002 (45*2π)/1193 weeks
46.0089 -.0003 (46*2π)/1193 weeks
47.00937 -.00011 (47*2π)/1193 weeks
48.00915 -.00002 (48*2π)/1192 weeks
49.00928 .00015 (49*2π)/1192 weeks
50.00883 .00015 (50*2π)/1192 weeks
51.0091 -.00037 (51*2π)/1192 weeks
52.00913 .00025 (52*2π)/1192 weeks
53.00892 -.00046 (53*2π)/1192 weeks
54.00961 .00003 (54*2π)/1192 weeks
55.00891 .00015 (55*2π)/1192 weeks
56.00946 -.00013 (56*2π)/1192 weeks
57.0089 .00021 (57*2π)/1192 weeks
58.0094 -.00006 (58*2π)/1192 weeks
59.00887 .00033 (59*2π)/1192 weeks
60.00887 -.00033 (60*2π)/1192 weeks
61.0094 .00006 (61*2π)/1192 weeks
62.0089 -.00021 (62*2π)/1192 weeks
63.00946 .00013 (63*2π)/1192 weeks
64.00891 -.00015 (64*2π)/1192 weeks
65.00961 -.00003 (65*2π)/1192 weeks
66.00892 .00046 (66*2π)/1192 weeks
67.00913 -.00025 (67*2π)/1192 weeks
68.0091 .00037 (68*2π)/1192 weeks
69.00883 -.00015 (69*2π)/1192 weeks
70.00928 -.00015 (70*2π)/1192 weeks
71.00915 .00002 (71*2π)/1192 weeks
72.00937 .00011 (72*2π)/1192 weeks
73.0089 .0003 (73*2π)/1192 weeks
74.00902 -.0002 (74*2π)/1192 weeks
75.00913 .00033 (75*2π)/1192 weeks
76.00875 -.00028 (76*2π)/1192 weeks
77.00938 -.00014 (77*2π)/1192 weeks
78.00926 .00029 (78*2π)/1192 weeks
79.00914 -.00004 (79*2π)/1192 weeks
80.00883 .0008 (80*2π)/1191 weeks
81.0086 -.00076 (81*2π)/1191 weeks
82.00939 .00033 (82*2π)/1191 weeks
83.00857 -.0001 (83*2π)/1191 weeks
84.00929 -.00033 (84*2π)/1191 weeks
85.00884 .0003 (85*2π)/1191 weeks
86.00912 -.00051 (86*2π)/1191 weeks
87.00897 .00042 (87*2π)/1191 weeks
88.00876 -.0008 (88*2π)/1191 weeks
89.00957 .00025 (89*2π)/1191 weeks
90.00868 -.00043 (90*2π)/1191 weeks
91.00959 -.00003 (91*2π)/1191 weeks
92.00897 .00016 (92*2π)/1191 weeks
93.0091 -.00027 (93*2π)/1191 weeks
94.00914 .00027 (94*2π)/1191 weeks
95.00899 -.00042 (95*2π)/1191 weeks
96.00946 .00023 (96*2π)/1191 weeks
97.00868 .00027 (97*2π)/1191 weeks
98.00899 -.00019 (98*2π)/1191 weeks
99.00873   (99*2π)/1191 weeks
100.00864 -.00012 (100*2π)/1191 weeks
101.00918 -.00108 (101*2π)/1191 weeks
102.00932 .00009 (102*2π)/1191 weeks
103.00985 -.00019 (103*2π)/1191 weeks
104.00853 .00066 (104*2π)/1191 weeks
105.00873   (105*2π)/1191 weeks
106.00835 -.00049 (106*2π)/1191 weeks
107.00862 -.0006 (107*2π)/1191 weeks
108.00944 -.00115 (108*2π)/1191 weeks
109.00935 .00005 (109*2π)/1191 weeks
110.00937 -.00062 (110*2π)/1191 weeks
111.0086 .00021 (111*2π)/1191 weeks
112.00955 -.00083 (112*2π)/1191 weeks
113.00786 -.00038 (113*2π)/1191 weeks
114.00958 -.00039 (114*2π)/1191 weeks
115.00777 -.0025 (115*2π)/1191 weeks
116.01047 -.00043 (116*2π)/1191 weeks
117.00826 -.00198 (117*2π)/1191 weeks