Back to list of Stocks    See Also: Seasonal Analysis of EDZGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of EDZ (Direxion Emerging Markets Bear )


EDZ (Direxion Emerging Markets Bear ) appears to have interesting cyclic behaviour every 43 weeks (135.2037*sine), 36 weeks (127.0294*sine), and 39 weeks (125.2377*sine).

EDZ (Direxion Emerging Markets Bear ) has an average price of 215.99 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/30/2008 to 3/20/2017 for EDZ (Direxion Emerging Markets Bear ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0215.9941   0 
1288.2083 103.7294 (1*2π)/430430 weeks
2234.524 113.8943 (2*2π)/430215 weeks
3199.5739 125.2817 (3*2π)/430143 weeks
4171.6789 130.8499 (4*2π)/430108 weeks
5160.4993 129.3835 (5*2π)/43086 weeks
6145.9681 139.5337 (6*2π)/43072 weeks
7123.3832 145.2588 (7*2π)/43061 weeks
899.13854 138.8737 (8*2π)/43054 weeks
988.1974 134.1591 (9*2π)/43048 weeks
1072.39984 135.2037 (10*2π)/43043 weeks
1165.53426 125.2377 (11*2π)/43039 weeks
1256.41113 127.0294 (12*2π)/43036 weeks
1342.40688 126.0807 (13*2π)/43033 weeks
1434.63361 115.8709 (14*2π)/43031 weeks
1529.72667 114.315 (15*2π)/43029 weeks
1621.00685 109.0054 (16*2π)/43027 weeks
1712.51443 106.2337 (17*2π)/43025 weeks
184.16108 101.1904 (18*2π)/43024 weeks
19-.81695 94.06644 (19*2π)/43023 weeks
20-5.34457 87.45748 (20*2π)/43022 weeks
21-7.57355 77.02774 (21*2π)/43020 weeks
22-9.39567 72.86777 (22*2π)/43020 weeks
23-13.45819 66.59858 (23*2π)/43019 weeks
24-14.09482 62.10943 (24*2π)/43018 weeks
25-17.42517 57.74869 (25*2π)/43017 weeks
26-19.08484 49.5083 (26*2π)/43017 weeks
27-15.61366 41.01144 (27*2π)/43016 weeks
28-13.17249 37.52349 (28*2π)/43015 weeks
29-10.80647 32.67153 (29*2π)/43015 weeks
30-6.93698 31.32119 (30*2π)/43014 weeks
31-6.48159 31.64855 (31*2π)/43014 weeks
32-8.62072 28.7726 (32*2π)/43013 weeks
33-6.32944 22.72383 (33*2π)/43013 weeks
34-3.04602 22.02351 (34*2π)/43013 weeks
35-1.21505 20.86832 (35*2π)/43012 weeks
361.9722 20.39149 (36*2π)/43012 weeks
372.69676 20.40716 (37*2π)/43012 weeks
382.19543 18.10734 (38*2π)/43011 weeks
394.17303 19.02302 (39*2π)/43011 weeks
403.90324 17.10027 (40*2π)/43011 weeks
416.46132 15.23702 (41*2π)/43010 weeks
428.67384 14.20597 (42*2π)/43010 weeks
4310.57428 14.42612 (43*2π)/43010 weeks
4413.54858 13.51918 (44*2π)/43010 weeks
4515.26404 15.51628 (45*2π)/43010 weeks
4617.10724 16.85594 (46*2π)/4309 weeks
4718.23037 17.64599 (47*2π)/4309 weeks
4820.99874 20.04449 (48*2π)/4309 weeks
4920.25913 23.47849 (49*2π)/4309 weeks
5019.7209 24.71905 (50*2π)/4309 weeks
5119.94494 27.21039 (51*2π)/4308 weeks
5217.7677 30.25157 (52*2π)/4308 weeks
5316.72906 30.48653 (53*2π)/4308 weeks
5415.8764 33.5789 (54*2π)/4308 weeks
5511.51409 34.88172 (55*2π)/4308 weeks
568.62238 34.0778 (56*2π)/4308 weeks
577.06252 33.35898 (57*2π)/4308 weeks
584.56207 32.04273 (58*2π)/4307 weeks
594.44872 30.38837 (59*2π)/4307 weeks
605.68861 30.94361 (60*2π)/4307 weeks
612.54572 33.0704 (61*2π)/4307 weeks
62-.36698 30.58044 (62*2π)/4307 weeks
63-.16448 29.71052 (63*2π)/4307 weeks
64-2.8423 29.97894 (64*2π)/4307 weeks
65-3.42279 26.82453 (65*2π)/4307 weeks
66-2.82221 26.8477 (66*2π)/4307 weeks
67-4.97206 26.9009 (67*2π)/4306 weeks
68-5.71471 25.21817 (68*2π)/4306 weeks
69-6.9751 24.3535 (69*2π)/4306 weeks
70-8.75097 23.63183 (70*2π)/4306 weeks
71-10.33987 21.46694 (71*2π)/4306 weeks
72-10.93648 19.71372 (72*2π)/4306 weeks
73-11.55044 17.32334 (73*2π)/4306 weeks
74-11.18737 14.01551 (74*2π)/4306 weeks
75-9.42187 13.01779 (75*2π)/4306 weeks
76-8.8047 11.54923 (76*2π)/4306 weeks
77-8.49005 10.58094 (77*2π)/4306 weeks
78-8.22621 9.87655 (78*2π)/4306 weeks
79-8.30096 9.25656 (79*2π)/4305 weeks
80-7.78292 8.47656 (80*2π)/4305 weeks
81-6.69866 7.64847 (81*2π)/4305 weeks
82-6.31405 6.92092 (82*2π)/4305 weeks
83-6.02782 5.8213 (83*2π)/4305 weeks
84-6.25474 4.833 (84*2π)/4305 weeks
85-5.5682 3.91409 (85*2π)/4305 weeks
86-4.92632 3.37549 (86*2π)/4305 weeks
87-3.57265 2.77105 (87*2π)/4305 weeks
88-2.91722 2.69013 (88*2π)/4305 weeks
89-3.4397 1.84862 (89*2π)/4305 weeks
90-2.26996 .36523 (90*2π)/4305 weeks
91-1.55123 .67995 (91*2π)/4305 weeks
92-1.10321 .85965 (92*2π)/4305 weeks
93-.88913 .37823 (93*2π)/4305 weeks
94-.38 -.11183 (94*2π)/4305 weeks
95-.44 -.98942 (95*2π)/4305 weeks
96.31195 -2.42063 (96*2π)/4304 weeks
971.97113 -3.31069 (97*2π)/4304 weeks
982.55734 -2.98362 (98*2π)/4304 weeks
993.86036 -3.74391 (99*2π)/4304 weeks
1005.76114 -3.00218 (100*2π)/4304 weeks
1016.1327 -2.22536 (101*2π)/4304 weeks
1026.29228 -2.14791 (102*2π)/4304 weeks
1036.84285 -2.47931 (103*2π)/4304 weeks
1047.75781 -3.10284 (104*2π)/4304 weeks
1058.80389 -3.09553 (105*2π)/4304 weeks
1069.74276 -2.16513 (106*2π)/4304 weeks
10710.81203 -2.39066 (107*2π)/4304 weeks
10813.16823 -1.83846 (108*2π)/4304 weeks
10914.11174 .28104 (109*2π)/4304 weeks
11013.98486 1.80438 (110*2π)/4304 weeks
11114.39051 3.244 (111*2π)/4304 weeks
11213.42374 5.53228 (112*2π)/4304 weeks
11311.8642 6.04329 (113*2π)/4304 weeks
11411.79011 6.13167 (114*2π)/4304 weeks
11511.0639 7.0228 (115*2π)/4304 weeks
1169.57534 6.60434 (116*2π)/4304 weeks
1179.56908 6.65918 (117*2π)/4304 weeks
1188.41034 6.8352 (118*2π)/4304 weeks
1198.0187 5.85691 (119*2π)/4304 weeks
1208.6793 5.53148 (120*2π)/4304 weeks
1218.60225 5.86292 (121*2π)/4304 weeks
1228.69745 5.72436 (122*2π)/4304 weeks
1238.53184 5.97095 (123*2π)/4303 weeks
1247.55593 6.73309 (124*2π)/4303 weeks
1256.7852 5.28942 (125*2π)/4303 weeks
1267.67929 4.58049 (126*2π)/4303 weeks
1278.35445 4.64125 (127*2π)/4303 weeks
1288.79733 5.05596 (128*2π)/4303 weeks
1298.49609 5.75751 (129*2π)/4303 weeks
1308.17905 6.07735 (130*2π)/4303 weeks
1317.69769 6.34183 (131*2π)/4303 weeks
1326.82107 6.15135 (132*2π)/4303 weeks
1336.83924 5.54209 (133*2π)/4303 weeks
1346.68685 5.24882 (134*2π)/4303 weeks
1356.90343 5.49775 (135*2π)/4303 weeks
1366.69172 5.15547 (136*2π)/4303 weeks
1376.88008 4.9613 (137*2π)/4303 weeks
1386.56992 4.67618 (138*2π)/4303 weeks
1396.81602 4.31819 (139*2π)/4303 weeks
1407.08894 4.61372 (140*2π)/4303 weeks
1416.9672 4.66183 (141*2π)/4303 weeks
1427.15011 4.6946 (142*2π)/4303 weeks
1437.27009 5.00537 (143*2π)/4303 weeks
1446.90324 4.75096 (144*2π)/4303 weeks
1456.85857 5.03521 (145*2π)/4303 weeks
1466.4101 4.92757 (146*2π)/4303 weeks
1476.6666 4.50653 (147*2π)/4303 weeks
1487.14472 4.89306 (148*2π)/4303 weeks
1496.60931 4.94798 (149*2π)/4303 weeks
1506.38771 4.97292 (150*2π)/4303 weeks
1516.1632 5.37524 (151*2π)/4303 weeks
1525.38294 4.70996 (152*2π)/4303 weeks
1535.99522 3.36146 (153*2π)/4303 weeks
1546.52047 3.85188 (154*2π)/4303 weeks
1556.54996 3.94686 (155*2π)/4303 weeks
1567.18484 4.22422 (156*2π)/4303 weeks
1577.22467 5.5001 (157*2π)/4303 weeks
1586.22686 5.16578 (158*2π)/4303 weeks
1597.04486 5.06577 (159*2π)/4303 weeks
1606.58357 6.62414 (160*2π)/4303 weeks
1615.14653 6.94792 (161*2π)/4303 weeks
1624.12358 6.92804 (162*2π)/4303 weeks
1633.05586 6.64678 (163*2π)/4303 weeks
1642.15578 5.46458 (164*2π)/4303 weeks
1652.19574 4.84968 (165*2π)/4303 weeks
1661.75536 4.45925 (166*2π)/4303 weeks
167.64124 4.17864 (167*2π)/4303 weeks
168.78343 2.71535 (168*2π)/4303 weeks
169.08847 1.838 (169*2π)/4303 weeks
170.0548 -.08586 (170*2π)/4303 weeks
1711.17142 -1.12424 (171*2π)/4303 weeks
1722.49223 -1.62176 (172*2π)/4303 weeks
1733.32218 -1.74291 (173*2π)/4302 weeks
1743.52944 -1.58912 (174*2π)/4302 weeks
1753.54012 -2.35231 (175*2π)/4302 weeks
1764.61814 -2.78825 (176*2π)/4302 weeks
1775.28771 -2.74334 (177*2π)/4302 weeks
1786.05945 -2.66128 (178*2π)/4302 weeks
1797.14031 -2.08801 (179*2π)/4302 weeks
1807.03737 -1.6436 (180*2π)/4302 weeks
1816.98568 -1.66422 (181*2π)/4302 weeks
1827.06338 -1.45872 (182*2π)/4302 weeks
1837.232 -1.22733 (183*2π)/4302 weeks
1847.30773 -1.60843 (184*2π)/4302 weeks
1857.85408 -1.49691 (185*2π)/4302 weeks
1867.77418 -1.36181 (186*2π)/4302 weeks
1877.98871 -1.67839 (187*2π)/4302 weeks
1888.9323 -1.09747 (188*2π)/4302 weeks
1898.632 -.48323 (189*2π)/4302 weeks
1909.2598 -.92746 (190*2π)/4302 weeks
1919.74159 -.03268 (191*2π)/4302 weeks
1929.00802 .73333 (192*2π)/4302 weeks
1938.6203 .60849 (193*2π)/4302 weeks
1949.13389 .75185 (194*2π)/4302 weeks
1958.83545 .76631 (195*2π)/4302 weeks
1969.06741 .68447 (196*2π)/4302 weeks
1979.46538 .88976 (197*2π)/4302 weeks
1989.22702 1.40815 (198*2π)/4302 weeks
1999.36758 1.72809 (199*2π)/4302 weeks
2009.39016 2.87468 (200*2π)/4302 weeks
2018.35993 3.31753 (201*2π)/4302 weeks
2028.03307 2.77997 (202*2π)/4302 weeks
2038.48728 3.18074 (203*2π)/4302 weeks
2047.78278 3.9517 (204*2π)/4302 weeks
2056.644 4.01546 (205*2π)/4302 weeks
2065.35899 3.36069 (206*2π)/4302 weeks
2075.19667 2.83078 (207*2π)/4302 weeks
2085.23505 2.29716 (208*2π)/4302 weeks
2096.17641 2.67001 (209*2π)/4302 weeks
2105.23403 3.26751 (210*2π)/4302 weeks
2113.79161 2.75702 (211*2π)/4302 weeks
2123.21337 1.57082 (212*2π)/4302 weeks
2133.02977 .93102 (213*2π)/4302 weeks
2143.76993 -.14819 (214*2π)/4302 weeks
2154.25321   (215*2π)/4302 weeks
2163.76993 .14819 (216*2π)/4302 weeks
2173.02977 -.93102 (217*2π)/4302 weeks
2183.21337 -1.57082 (218*2π)/4302 weeks
2193.79161 -2.75702 (219*2π)/4302 weeks
2205.23403 -3.26751 (220*2π)/4302 weeks
2216.17641 -2.67001 (221*2π)/4302 weeks
2225.23505 -2.29716 (222*2π)/4302 weeks
2235.19667 -2.83078 (223*2π)/4302 weeks
2245.35899 -3.36069 (224*2π)/4302 weeks
2256.644 -4.01546 (225*2π)/4302 weeks
2267.78278 -3.9517 (226*2π)/4302 weeks
2278.48728 -3.18074 (227*2π)/4302 weeks
2288.03307 -2.77997 (228*2π)/4302 weeks
2298.35993 -3.31753 (229*2π)/4302 weeks
2309.39016 -2.87468 (230*2π)/4302 weeks
2319.36758 -1.72809 (231*2π)/4302 weeks
2329.22702 -1.40815 (232*2π)/4302 weeks
2339.46538 -.88976 (233*2π)/4302 weeks
2349.06741 -.68447 (234*2π)/4302 weeks
2358.83545 -.76631 (235*2π)/4302 weeks
2369.13389 -.75185 (236*2π)/4302 weeks
2378.6203 -.60849 (237*2π)/4302 weeks
2389.00802 -.73333 (238*2π)/4302 weeks
2399.74159 .03268 (239*2π)/4302 weeks
2409.2598 .92746 (240*2π)/4302 weeks
2418.632 .48323 (241*2π)/4302 weeks
2428.9323 1.09747 (242*2π)/4302 weeks
2437.98871 1.67839 (243*2π)/4302 weeks
2447.77418 1.36181 (244*2π)/4302 weeks
2457.85408 1.49691 (245*2π)/4302 weeks
2467.30773 1.60843 (246*2π)/4302 weeks
2477.232 1.22733 (247*2π)/4302 weeks
2487.06338 1.45872 (248*2π)/4302 weeks
2496.98568 1.66422 (249*2π)/4302 weeks
2507.03737 1.6436 (250*2π)/4302 weeks
2517.14031 2.08801 (251*2π)/4302 weeks
2526.05945 2.66128 (252*2π)/4302 weeks
2535.28771 2.74334 (253*2π)/4302 weeks
2544.61814 2.78825 (254*2π)/4302 weeks
2553.54012 2.35231 (255*2π)/4302 weeks
2563.52944 1.58912 (256*2π)/4302 weeks
2573.32218 1.74291 (257*2π)/4302 weeks
2582.49223 1.62176 (258*2π)/4302 weeks
2591.17142 1.12424 (259*2π)/4302 weeks
260.0548 .08586 (260*2π)/4302 weeks
261.08847 -1.838 (261*2π)/4302 weeks
262.78343 -2.71535 (262*2π)/4302 weeks
263.64124 -4.17864 (263*2π)/4302 weeks
2641.75536 -4.45925 (264*2π)/4302 weeks
2652.19574 -4.84968 (265*2π)/4302 weeks
2662.15578 -5.46458 (266*2π)/4302 weeks
2673.05586 -6.64678 (267*2π)/4302 weeks
2684.12358 -6.92804 (268*2π)/4302 weeks
2695.14653 -6.94792 (269*2π)/4302 weeks
2706.58357 -6.62414 (270*2π)/4302 weeks
2717.04486 -5.06577 (271*2π)/4302 weeks
2726.22686 -5.16578 (272*2π)/4302 weeks
2737.22467 -5.5001 (273*2π)/4302 weeks
2747.18484 -4.22422 (274*2π)/4302 weeks
2756.54996 -3.94686 (275*2π)/4302 weeks
2766.52047 -3.85188 (276*2π)/4302 weeks
2775.99522 -3.36146 (277*2π)/4302 weeks
2785.38294 -4.70996 (278*2π)/4302 weeks
2796.1632 -5.37524 (279*2π)/4302 weeks
2806.38771 -4.97292 (280*2π)/4302 weeks
2816.60931 -4.94798 (281*2π)/4302 weeks
2827.14472 -4.89306 (282*2π)/4302 weeks
2836.6666 -4.50653 (283*2π)/4302 weeks
2846.4101 -4.92757 (284*2π)/4302 weeks
2856.85857 -5.03521 (285*2π)/4302 weeks
2866.90324 -4.75096 (286*2π)/4302 weeks
2877.27009 -5.00537 (287*2π)/4301 weeks
2887.15011 -4.6946 (288*2π)/4301 weeks
2896.9672 -4.66183 (289*2π)/4301 weeks
2907.08894 -4.61372 (290*2π)/4301 weeks
2916.81602 -4.31819 (291*2π)/4301 weeks
2926.56992 -4.67618 (292*2π)/4301 weeks
2936.88008 -4.9613 (293*2π)/4301 weeks
2946.69172 -5.15547 (294*2π)/4301 weeks
2956.90343 -5.49775 (295*2π)/4301 weeks
2966.68685 -5.24882 (296*2π)/4301 weeks
2976.83924 -5.54209 (297*2π)/4301 weeks
2986.82107 -6.15135 (298*2π)/4301 weeks
2997.69769 -6.34183 (299*2π)/4301 weeks
3008.17905 -6.07735 (300*2π)/4301 weeks
3018.49609 -5.75751 (301*2π)/4301 weeks
3028.79733 -5.05596 (302*2π)/4301 weeks
3038.35445 -4.64125 (303*2π)/4301 weeks
3047.67929 -4.58049 (304*2π)/4301 weeks
3056.7852 -5.28942 (305*2π)/4301 weeks
3067.55593 -6.73309 (306*2π)/4301 weeks
3078.53184 -5.97095 (307*2π)/4301 weeks
3088.69745 -5.72436 (308*2π)/4301 weeks
3098.60225 -5.86292 (309*2π)/4301 weeks
3108.6793 -5.53148 (310*2π)/4301 weeks
3118.0187 -5.85691 (311*2π)/4301 weeks
3128.41034 -6.8352 (312*2π)/4301 weeks
3139.56908 -6.65918 (313*2π)/4301 weeks
3149.57534 -6.60434 (314*2π)/4301 weeks
31511.0639 -7.0228 (315*2π)/4301 weeks
31611.79011 -6.13167 (316*2π)/4301 weeks
31711.8642 -6.04329 (317*2π)/4301 weeks
31813.42374 -5.53228 (318*2π)/4301 weeks
31914.39051 -3.244 (319*2π)/4301 weeks
32013.98486 -1.80438 (320*2π)/4301 weeks
32114.11174 -.28104 (321*2π)/4301 weeks
32213.16823 1.83846 (322*2π)/4301 weeks
32310.81203 2.39066 (323*2π)/4301 weeks
3249.74276 2.16513 (324*2π)/4301 weeks
3258.80389 3.09553 (325*2π)/4301 weeks
3267.75781 3.10284 (326*2π)/4301 weeks
3276.84285 2.47931 (327*2π)/4301 weeks
3286.29228 2.14791 (328*2π)/4301 weeks
3296.1327 2.22536 (329*2π)/4301 weeks
3305.76114 3.00218 (330*2π)/4301 weeks
3313.86036 3.74391 (331*2π)/4301 weeks
3322.55734 2.98362 (332*2π)/4301 weeks
3331.97113 3.31069 (333*2π)/4301 weeks
334.31195 2.42063 (334*2π)/4301 weeks
335-.44 .98942 (335*2π)/4301 weeks
336-.38 .11183 (336*2π)/4301 weeks
337-.88913 -.37823 (337*2π)/4301 weeks
338-1.10321 -.85965 (338*2π)/4301 weeks
339-1.55123 -.67995 (339*2π)/4301 weeks
340-2.26996 -.36523 (340*2π)/4301 weeks
341-3.4397 -1.84862 (341*2π)/4301 weeks
342-2.91722 -2.69013 (342*2π)/4301 weeks
343-3.57265 -2.77105 (343*2π)/4301 weeks
344-4.92632 -3.37549 (344*2π)/4301 weeks
345-5.5682 -3.91409 (345*2π)/4301 weeks
346-6.25474 -4.833 (346*2π)/4301 weeks
347-6.02782 -5.8213 (347*2π)/4301 weeks
348-6.31405 -6.92092 (348*2π)/4301 weeks
349-6.69866 -7.64847 (349*2π)/4301 weeks
350-7.78292 -8.47656 (350*2π)/4301 weeks
351-8.30096 -9.25656 (351*2π)/4301 weeks
352-8.22621 -9.87655 (352*2π)/4301 weeks
353-8.49005 -10.58094 (353*2π)/4301 weeks
354-8.8047 -11.54923 (354*2π)/4301 weeks
355-9.42187 -13.01779 (355*2π)/4301 weeks
356-11.18737 -14.01551 (356*2π)/4301 weeks
357-11.55044 -17.32334 (357*2π)/4301 weeks
358-10.93648 -19.71372 (358*2π)/4301 weeks
359-10.33987 -21.46694 (359*2π)/4301 weeks
360-8.75097 -23.63183 (360*2π)/4301 weeks
361-6.9751 -24.3535 (361*2π)/4301 weeks
362-5.71471 -25.21817 (362*2π)/4301 weeks
363-4.97206 -26.9009 (363*2π)/4301 weeks
364-2.82221 -26.8477 (364*2π)/4301 weeks
365-3.42279 -26.82453 (365*2π)/4301 weeks
366-2.8423 -29.97894 (366*2π)/4301 weeks
367-.16448 -29.71052 (367*2π)/4301 weeks
368-.36698 -30.58044 (368*2π)/4301 weeks
3692.54572 -33.0704 (369*2π)/4301 weeks
3705.68861 -30.94361 (370*2π)/4301 weeks
3714.44872 -30.38837 (371*2π)/4301 weeks
3724.56207 -32.04273 (372*2π)/4301 weeks
3737.06252 -33.35898 (373*2π)/4301 weeks
3748.62238 -34.0778 (374*2π)/4301 weeks
37511.51409 -34.88172 (375*2π)/4301 weeks
37615.8764 -33.5789 (376*2π)/4301 weeks
37716.72906 -30.48653 (377*2π)/4301 weeks
37817.7677 -30.25157 (378*2π)/4301 weeks
37919.94494 -27.21039 (379*2π)/4301 weeks
38019.7209 -24.71905 (380*2π)/4301 weeks
38120.25913 -23.47849 (381*2π)/4301 weeks
38220.99874 -20.04449 (382*2π)/4301 weeks
38318.23037 -17.64599 (383*2π)/4301 weeks
38417.10724 -16.85594 (384*2π)/4301 weeks
38515.26404 -15.51628 (385*2π)/4301 weeks
38613.54858 -13.51918 (386*2π)/4301 weeks
38710.57428 -14.42612 (387*2π)/4301 weeks
3888.67384 -14.20597 (388*2π)/4301 weeks
3896.46132 -15.23702 (389*2π)/4301 weeks
3903.90324 -17.10027 (390*2π)/4301 weeks
3914.17303 -19.02302 (391*2π)/4301 weeks
3922.19543 -18.10734 (392*2π)/4301 weeks
3932.69676 -20.40716 (393*2π)/4301 weeks
3941.9722 -20.39149 (394*2π)/4301 weeks
395-1.21505 -20.86832 (395*2π)/4301 weeks
396-3.04602 -22.02351 (396*2π)/4301 weeks
397-6.32944 -22.72383 (397*2π)/4301 weeks
398-8.62072 -28.7726 (398*2π)/4301 weeks
399-6.48159 -31.64855 (399*2π)/4301 weeks
400-6.93698 -31.32119 (400*2π)/4301 weeks
401-10.80647 -32.67153 (401*2π)/4301 weeks
402-13.17249 -37.52349 (402*2π)/4301 weeks
403-15.61366 -41.01144 (403*2π)/4301 weeks
404-19.08484 -49.5083 (404*2π)/4301 weeks
405-17.42517 -57.74869 (405*2π)/4301 weeks
406-14.09482 -62.10943 (406*2π)/4301 weeks
407-13.45819 -66.59858 (407*2π)/4301 weeks
408-9.39567 -72.86777 (408*2π)/4301 weeks
409-7.57355 -77.02774 (409*2π)/4301 weeks
410-5.34457 -87.45748 (410*2π)/4301 weeks
411-.81695 -94.06644 (411*2π)/4301 weeks
4124.16108 -101.1904 (412*2π)/4301 weeks
41312.51443 -106.2337 (413*2π)/4301 weeks
41421.00685 -109.0054 (414*2π)/4301 weeks
41529.72667 -114.315 (415*2π)/4301 weeks
41634.63361 -115.8709 (416*2π)/4301 weeks
41742.40688 -126.0807 (417*2π)/4301 weeks
41856.41113 -127.0294 (418*2π)/4301 weeks
41965.53426 -125.2377 (419*2π)/4301 weeks
42072.39984 -135.2037 (420*2π)/4301 weeks
42188.1974 -134.1591 (421*2π)/4301 weeks
42299.13854 -138.8737 (422*2π)/4301 weeks
423123.3832 -145.2588 (423*2π)/4301 weeks
424145.9681 -139.5337 (424*2π)/4301 weeks
425160.4993 -129.3835 (425*2π)/4301 weeks
426171.6789 -130.8499 (426*2π)/4301 weeks
427199.5739 -125.2817 (427*2π)/4301 weeks
428234.524 -113.8943 (428*2π)/4301 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.