Back to list of Stocks    See Also: Seasonal Analysis of ECIGGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ECIG (ELECTRONIC CIG INTL)


ECIG (ELECTRONIC CIG INTL) appears to have interesting cyclic behaviour every 17 weeks (16.1249*cosine), 19 weeks (14.8241*cosine), and 11 weeks (8.6407*cosine).

ECIG (ELECTRONIC CIG INTL) has an average price of 50.68 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/12/2013 to 1/9/2017 for ECIG (ELECTRONIC CIG INTL), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
050.68001   0 
129.62072 80.48214 (1*2π)/188188 weeks
2-35.10214 35.93945 (2*2π)/18894 weeks
3-17.39654 2.80695 (3*2π)/18863 weeks
4-13.21136 5.6407 (4*2π)/18847 weeks
5-12.56386 -2.35702 (5*2π)/18838 weeks
6-9.08665 -1.04551 (6*2π)/18831 weeks
7-14.19143 -6.82736 (7*2π)/18827 weeks
8-6.46925 -17.00588 (8*2π)/18824 weeks
94.6455 -17.17536 (9*2π)/18821 weeks
1014.82408 -11.20501 (10*2π)/18819 weeks
1116.12486 2.08817 (11*2π)/18817 weeks
128.39568 6.84598 (12*2π)/18816 weeks
136.39298 7.13959 (13*2π)/18814 weeks
142.77274 10.69528 (14*2π)/18813 weeks
15-3.56559 10.02956 (15*2π)/18813 weeks
16-7.69427 6.10796 (16*2π)/18812 weeks
17-8.64073 .4362 (17*2π)/18811 weeks
18-5.55934 -3.03743 (18*2π)/18810 weeks
19-3.80975 -3.66824 (19*2π)/18810 weeks
20-1.60828 -5.1518 (20*2π)/1889 weeks
21.7444 -4.05634 (21*2π)/1889 weeks
221.30674 -4.13726 (22*2π)/1889 weeks
234.4349 -3.37959 (23*2π)/1888 weeks
244.93137 .39306 (24*2π)/1888 weeks
253.36464 1.84726 (25*2π)/1888 weeks
262.3746 3.12318 (26*2π)/1887 weeks
27-.18084 3.2759 (27*2π)/1887 weeks
28-.54873 1.28426 (28*2π)/1887 weeks
29.50148 1.95735 (29*2π)/1886 weeks
30-.99811 3.03143 (30*2π)/1886 weeks
31-2.83949 2.29084 (31*2π)/1886 weeks
32-4.07904 .39121 (32*2π)/1886 weeks
33-3.53779 -2.20657 (33*2π)/1886 weeks
34-1.60723 -3.37363 (34*2π)/1886 weeks
35-.18342 -3.64052 (35*2π)/1885 weeks
361.92034 -3.92833 (36*2π)/1885 weeks
374.39753 -1.74055 (37*2π)/1885 weeks
383.53255 1.41112 (38*2π)/1885 weeks
391.62508 1.59611 (39*2π)/1885 weeks
401.90027 1.34965 (40*2π)/1885 weeks
411.85697 3.09055 (41*2π)/1885 weeks
42-.6698 4.4127 (42*2π)/1884 weeks
43-3.59574 2.81608 (43*2π)/1884 weeks
44-3.90762 -.26501 (44*2π)/1884 weeks
45-2.36527 -1.79306 (45*2π)/1884 weeks
46-1.21964 -2.1367 (46*2π)/1884 weeks
47-.29216 -2.30832 (47*2π)/1884 weeks
48.78893 -2.44777 (48*2π)/1884 weeks
492.59782 -1.54098 (49*2π)/1884 weeks
502.47217 1.31009 (50*2π)/1884 weeks
51-.47452 1.70332 (51*2π)/1884 weeks
52-.83019 -.96074 (52*2π)/1884 weeks
531.59694 -1.12192 (53*2π)/1884 weeks
541.82338 .93054 (54*2π)/1883 weeks
55.63815 1.28587 (55*2π)/1883 weeks
56.6338 1.23978 (56*2π)/1883 weeks
57.01101 2.17915 (57*2π)/1883 weeks
58-1.74508 1.74804 (58*2π)/1883 weeks
59-1.91892 .19494 (59*2π)/1883 weeks
60-1.55351 -.14392 (60*2π)/1883 weeks
61-1.84366 -.8201 (61*2π)/1883 weeks
62-1.33489 -1.92388 (62*2π)/1883 weeks
63-.23773 -2.66465 (63*2π)/1883 weeks
641.61384 -2.73665 (64*2π)/1883 weeks
653.24367 -.94099 (65*2π)/1883 weeks
662.56082 1.39886 (66*2π)/1883 weeks
67.81605 1.86209 (67*2π)/1883 weeks
68.0402 1.31361 (68*2π)/1883 weeks
69-.13218 1.03459 (69*2π)/1883 weeks
70-.45986 .96272 (70*2π)/1883 weeks
71-.7639 .48845 (71*2π)/1883 weeks
72-.53521 .14539 (72*2π)/1883 weeks
73-.4299 .1462 (73*2π)/1883 weeks
74-.3684 .28957 (74*2π)/1883 weeks
75-1.04574 .52457 (75*2π)/1883 weeks
76-1.83081 -.67942 (76*2π)/1882 weeks
77-.72573 -2.10371 (77*2π)/1882 weeks
78.69794 -1.781 (78*2π)/1882 weeks
791.25056 -1.33498 (79*2π)/1882 weeks
802.19126 -.43929 (80*2π)/1882 weeks
811.49015 1.31592 (81*2π)/1882 weeks
82-.0892 .7956 (82*2π)/1882 weeks
83.75083 -.18246 (83*2π)/1882 weeks
841.55574 1.25852 (84*2π)/1882 weeks
85-.01438 2.54494 (85*2π)/1882 weeks
86-1.82823 1.80736 (86*2π)/1882 weeks
87-2.4587 .13382 (87*2π)/1882 weeks
88-1.61704 -1.35161 (88*2π)/1882 weeks
89-.39639 -1.36575 (89*2π)/1882 weeks
90-.25524 -1.09655 (90*2π)/1882 weeks
91.18038 -1.60845 (91*2π)/1882 weeks
921.41298 -1.18475 (92*2π)/1882 weeks
931.33493 .11355 (93*2π)/1882 weeks
94.62983   (94*2π)/1882 weeks
951.33493 -.11355 (95*2π)/1882 weeks
961.41298 1.18475 (96*2π)/1882 weeks
97.18038 1.60845 (97*2π)/1882 weeks
98-.25524 1.09655 (98*2π)/1882 weeks
99-.39639 1.36575 (99*2π)/1882 weeks
100-1.61704 1.35161 (100*2π)/1882 weeks
101-2.4587 -.13382 (101*2π)/1882 weeks
102-1.82823 -1.80736 (102*2π)/1882 weeks
103-.01438 -2.54494 (103*2π)/1882 weeks
1041.55574 -1.25852 (104*2π)/1882 weeks
105.75083 .18246 (105*2π)/1882 weeks
106-.0892 -.7956 (106*2π)/1882 weeks
1071.49015 -1.31592 (107*2π)/1882 weeks
1082.19126 .43929 (108*2π)/1882 weeks
1091.25056 1.33498 (109*2π)/1882 weeks
110.69794 1.781 (110*2π)/1882 weeks
111-.72573 2.10371 (111*2π)/1882 weeks
112-1.83081 .67942 (112*2π)/1882 weeks
113-1.04574 -.52457 (113*2π)/1882 weeks
114-.3684 -.28957 (114*2π)/1882 weeks
115-.4299 -.1462 (115*2π)/1882 weeks
116-.53521 -.14539 (116*2π)/1882 weeks
117-.7639 -.48845 (117*2π)/1882 weeks
118-.45986 -.96272 (118*2π)/1882 weeks
119-.13218 -1.03459 (119*2π)/1882 weeks
120.0402 -1.31361 (120*2π)/1882 weeks
121.81605 -1.86209 (121*2π)/1882 weeks
1222.56082 -1.39886 (122*2π)/1882 weeks
1233.24367 .94099 (123*2π)/1882 weeks
1241.61384 2.73665 (124*2π)/1882 weeks
125-.23773 2.66465 (125*2π)/1882 weeks
126-1.33489 1.92388 (126*2π)/1881 weeks
127-1.84366 .8201 (127*2π)/1881 weeks
128-1.55351 .14392 (128*2π)/1881 weeks
129-1.91892 -.19494 (129*2π)/1881 weeks
130-1.74508 -1.74804 (130*2π)/1881 weeks
131.01101 -2.17915 (131*2π)/1881 weeks
132.6338 -1.23978 (132*2π)/1881 weeks
133.63815 -1.28587 (133*2π)/1881 weeks
1341.82338 -.93054 (134*2π)/1881 weeks
1351.59694 1.12192 (135*2π)/1881 weeks
136-.83019 .96074 (136*2π)/1881 weeks
137-.47452 -1.70332 (137*2π)/1881 weeks
1382.47217 -1.31009 (138*2π)/1881 weeks
1392.59782 1.54098 (139*2π)/1881 weeks
140.78893 2.44777 (140*2π)/1881 weeks
141-.29216 2.30832 (141*2π)/1881 weeks
142-1.21964 2.1367 (142*2π)/1881 weeks
143-2.36527 1.79306 (143*2π)/1881 weeks
144-3.90762 .26501 (144*2π)/1881 weeks
145-3.59574 -2.81608 (145*2π)/1881 weeks
146-.6698 -4.4127 (146*2π)/1881 weeks
1471.85697 -3.09055 (147*2π)/1881 weeks
1481.90027 -1.34965 (148*2π)/1881 weeks
1491.62508 -1.59611 (149*2π)/1881 weeks
1503.53255 -1.41112 (150*2π)/1881 weeks
1514.39753 1.74055 (151*2π)/1881 weeks
1521.92034 3.92833 (152*2π)/1881 weeks
153-.18342 3.64052 (153*2π)/1881 weeks
154-1.60723 3.37363 (154*2π)/1881 weeks
155-3.53779 2.20657 (155*2π)/1881 weeks
156-4.07904 -.39121 (156*2π)/1881 weeks
157-2.83949 -2.29084 (157*2π)/1881 weeks
158-.99811 -3.03143 (158*2π)/1881 weeks
159.50148 -1.95735 (159*2π)/1881 weeks
160-.54873 -1.28426 (160*2π)/1881 weeks
161-.18084 -3.2759 (161*2π)/1881 weeks
1622.3746 -3.12318 (162*2π)/1881 weeks
1633.36464 -1.84726 (163*2π)/1881 weeks
1644.93137 -.39306 (164*2π)/1881 weeks
1654.4349 3.37959 (165*2π)/1881 weeks
1661.30674 4.13726 (166*2π)/1881 weeks
167.7444 4.05634 (167*2π)/1881 weeks
168-1.60828 5.1518 (168*2π)/1881 weeks
169-3.80975 3.66824 (169*2π)/1881 weeks
170-5.55934 3.03743 (170*2π)/1881 weeks
171-8.64073 -.4362 (171*2π)/1881 weeks
172-7.69427 -6.10796 (172*2π)/1881 weeks
173-3.56559 -10.02956 (173*2π)/1881 weeks
1742.77274 -10.69528 (174*2π)/1881 weeks
1756.39298 -7.13959 (175*2π)/1881 weeks
1768.39568 -6.84598 (176*2π)/1881 weeks
17716.12486 -2.08817 (177*2π)/1881 weeks
17814.82408 11.20501 (178*2π)/1881 weeks
1794.6455 17.17536 (179*2π)/1881 weeks
180-6.46925 17.00588 (180*2π)/1881 weeks
181-14.19143 6.82736 (181*2π)/1881 weeks
182-9.08665 1.04551 (182*2π)/1881 weeks
183-12.56386 2.35702 (183*2π)/1881 weeks
184-13.21136 -5.6407 (184*2π)/1881 weeks
185-17.39654 -2.80695 (185*2π)/1881 weeks
186-35.10214 -35.93945 (186*2π)/1881 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.