Back to list of Stocks    See Also: Seasonal Analysis of DOMKGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of DOMK (DOMARK INTL INC)


DOMK (DOMARK INTL INC) appears to have interesting cyclic behaviour every 25 weeks (721.0927*cosine), 32 weeks (718.3197*cosine), and 19 weeks (408.2595*cosine).

DOMK (DOMARK INTL INC) has an average price of 3,284.16 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 5/27/2008 to 1/9/2017 for DOMK (DOMARK INTL INC), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
03,284.163   0 
12,733.279 3,819.333 (1*2π)/354354 weeks
2679.5443 1,221.456 (2*2π)/354177 weeks
32,549.738 1,322.116 (3*2π)/354118 weeks
41,428.19 3,502.407 (4*2π)/35489 weeks
5-890.6447 2,748.688 (5*2π)/35471 weeks
6-966.9979 1,328.637 (6*2π)/35459 weeks
7-813.7075 919.0331 (7*2π)/35451 weeks
8-631.1303 477.9402 (8*2π)/35444 weeks
9-303.4563 445.8517 (9*2π)/35439 weeks
10-412.4449 632.1456 (10*2π)/35435 weeks
11-718.3197 214.7831 (11*2π)/35432 weeks
12-103.994 -162.5898 (12*2π)/35430 weeks
1359.79837 539.7727 (13*2π)/35427 weeks
14-721.0927 380.7809 (14*2π)/35425 weeks
15-392.9092 -381.0294 (15*2π)/35424 weeks
1698.05782 -60.76072 (16*2π)/35422 weeks
17-170.6759 -29.58553 (17*2π)/35421 weeks
18206.9991 -275.4177 (18*2π)/35420 weeks
19408.2595 300.1128 (19*2π)/35419 weeks
20-157.6067 358.5774 (20*2π)/35418 weeks
2118.99277 -67.06417 (21*2π)/35417 weeks
22274.9575 339.7306 (22*2π)/35416 weeks
23-250.5129 479.8474 (23*2π)/35415 weeks
24-315.7039 -2.74408 (24*2π)/35415 weeks
25-11.58463 39.80568 (25*2π)/35414 weeks
26-196.1939 131.3721 (26*2π)/35414 weeks
27-137.0927 -147.1391 (27*2π)/35413 weeks
28128.3788 9.95917 (28*2π)/35413 weeks
29-139.1945 180.2079 (29*2π)/35412 weeks
30-202.5463 -200.2559 (30*2π)/35412 weeks
31215.3803 -187.5639 (31*2π)/35411 weeks
32141.619 161.2399 (32*2π)/35411 weeks
33-84.04715 9.14058 (33*2π)/35411 weeks
34149.2713 -110.5878 (34*2π)/35410 weeks
35215.9603 157.7298 (35*2π)/35410 weeks
36-19.44473 201.1245 (36*2π)/35410 weeks
373.31114 45.90215 (37*2π)/35410 weeks
3858.71058 218.4168 (38*2π)/3549 weeks
39-275.7524 186.4417 (39*2π)/3549 weeks
40-194.4185 -201.8595 (40*2π)/3549 weeks
41109.2734 -79.79536 (41*2π)/3549 weeks
42-103.6081 77.99154 (42*2π)/3548 weeks
43-141.3875 -245.2003 (43*2π)/3548 weeks
44194.1898 -209.3549 (44*2π)/3548 weeks
4590.147 -4.84749 (45*2π)/3548 weeks
4664.43498 -202.5144 (46*2π)/3548 weeks
47333.7656 -118.1415 (47*2π)/3548 weeks
48213.9146 127.1639 (48*2π)/3547 weeks
4979.03689 -34.51284 (49*2π)/3547 weeks
50324.9022 -63.04612 (50*2π)/3547 weeks
51308.0294 239.7241 (51*2π)/3547 weeks
5253.4931 200.7903 (52*2π)/3547 weeks
53150.789 77.10702 (53*2π)/3547 weeks
54158.6589 258.7794 (54*2π)/3547 weeks
55-69.55383 218.8868 (55*2π)/3546 weeks
56-14.85605 16.62855 (56*2π)/3546 weeks
57110.1703 103.209 (57*2π)/3546 weeks
58-20.80546 140.373 (58*2π)/3546 weeks
5911.65484 -15.74267 (59*2π)/3546 weeks
60166.9209 51.49554 (60*2π)/3546 weeks
6196.45763 188.8852 (61*2π)/3546 weeks
62-2.17218 122.0165 (62*2π)/3546 weeks
6374.49389 79.88056 (63*2π)/3546 weeks
6472.04732 162.8118 (64*2π)/3546 weeks
6520.81574 145.5756 (65*2π)/3545 weeks
6647.19448 160.9779 (66*2π)/3545 weeks
67-18.65905 206.8331 (67*2π)/3545 weeks
68-55.69266 147.8104 (68*2π)/3545 weeks
69-32.00114 176.6471 (69*2π)/3545 weeks
70-134.0519 202.2757 (70*2π)/3545 weeks
71-196.0545 100.818 (71*2π)/3545 weeks
72-182.9878 45.75755 (72*2π)/3545 weeks
73-205.1214 -40.26092 (73*2π)/3545 weeks
74-90.63184 -133.5394 (74*2π)/3545 weeks
75-13.63208 -52.63694 (75*2π)/3545 weeks
76-69.03583 -63.25481 (76*2π)/3545 weeks
7715.27576 -134.6352 (77*2π)/3545 weeks
78112.7251 -41.85622 (78*2π)/3545 weeks
7954.94769 50.86122 (79*2π)/3544 weeks
80.2442 30.27938 (80*2π)/3544 weeks
81-3.76674 22.80718 (81*2π)/3544 weeks
82-32.73779 1.94137 (82*2π)/3544 weeks
831.53562 -47.35671 (83*2π)/3544 weeks
8459.77807 1.57001 (84*2π)/3544 weeks
85-10.34088 67.19885 (85*2π)/3544 weeks
86-81.71336 -25.95787 (86*2π)/3544 weeks
8722.23211 -84.02498 (87*2π)/3544 weeks
8838.60901 14.80551 (88*2π)/3544 weeks
89-54.37756 -11.74786 (89*2π)/3544 weeks
90-24.1072 -102.5699 (90*2π)/3544 weeks
9146.18078 -109.0895 (91*2π)/3544 weeks
9279.61675 -94.83626 (92*2π)/3544 weeks
93136.5753 -84.61336 (93*2π)/3544 weeks
94168.5318 14.30043 (94*2π)/3544 weeks
9578.40347 44.90752 (95*2π)/3544 weeks
96104.4238 -15.50826 (96*2π)/3544 weeks
97154.093 71.41602 (97*2π)/3544 weeks
9852.23508 125.061 (98*2π)/3544 weeks
9916.13374 55.25742 (99*2π)/3544 weeks
10040.45658 66.51806 (100*2π)/3544 weeks
101-6.47692 54.55545 (101*2π)/3544 weeks
10234.25894 21.66381 (102*2π)/3543 weeks
10319.73421 95.43602 (103*2π)/3543 weeks
104-90.0722 47.43845 (104*2π)/3543 weeks
105-40.45636 -80.03402 (105*2π)/3543 weeks
10665.8777 -38.93763 (106*2π)/3543 weeks
10717.81435 19.85528 (107*2π)/3543 weeks
108-4.93799 -51.37165 (108*2π)/3543 weeks
10982.52971 -66.73504 (109*2π)/3543 weeks
110100.4074 2.96285 (110*2π)/3543 weeks
11180.46893 6.77462 (111*2π)/3543 weeks
112111.7652 38.4691 (112*2π)/3543 weeks
11349.06535 101.1648 (113*2π)/3543 weeks
114-8.39633 26.64587 (114*2π)/3543 weeks
11569.80387 9.59915 (115*2π)/3543 weeks
11650.91867 90.07034 (116*2π)/3543 weeks
117-30.58513 72.37551 (117*2π)/3543 weeks
118-38.536 -1.34421 (118*2π)/3543 weeks
11911.99396 -23.94813 (119*2π)/3543 weeks
12022.85112 -6.33536 (120*2π)/3543 weeks
12131.9402 -17.12478 (121*2π)/3543 weeks
12247.12761 5.66624 (122*2π)/3543 weeks
12316.09366 -5.16009 (123*2π)/3543 weeks
12472.1082 -50.0813 (124*2π)/3543 weeks
125135.089 42.02887 (125*2π)/3543 weeks
12637.73613 110.8641 (126*2π)/3543 weeks
127-4.37454 40.99697 (127*2π)/3543 weeks
12820.55898 53.3452 (128*2π)/3543 weeks
129-36.32858 38.91901 (129*2π)/3543 weeks
130-4.192 -17.50923 (130*2π)/3543 weeks
1318.3037 16.35591 (131*2π)/3543 weeks
132-27.21862 -23.21987 (132*2π)/3543 weeks
13337.71033 -70.53709 (133*2π)/3543 weeks
13499.41156 -8.78429 (134*2π)/3543 weeks
13548.35146 44.94491 (135*2π)/3543 weeks
13636.39114 7.17115 (136*2π)/3543 weeks
13754.08052 42.39093 (137*2π)/3543 weeks
138-1.72981 42.82709 (138*2π)/3543 weeks
1395.35713 -11.27837 (139*2π)/3543 weeks
14053.09065 5.51399 (140*2π)/3543 weeks
14116.24257 43.71271 (141*2π)/3543 weeks
142.92586 -16.22963 (142*2π)/3542 weeks
14372.794 3.03509 (143*2π)/3542 weeks
14427.96664 69.50706 (144*2π)/3542 weeks
145-20.9347 24.56177 (145*2π)/3542 weeks
14611.79592 -.48912 (146*2π)/3542 weeks
1479.93555 33.64035 (147*2π)/3542 weeks
148-43.83201 6.45995 (148*2π)/3542 weeks
149-1.80746 -58.55603 (149*2π)/3542 weeks
15043.61404 -19.59248 (150*2π)/3542 weeks
15120.49002 -12.85351 (151*2π)/3542 weeks
15244.71761 -25.1943 (152*2π)/3542 weeks
15358.83058 13.0524 (153*2π)/3542 weeks
15417.45875 28.85544 (154*2π)/3542 weeks
15517.35438 -7.72157 (155*2π)/3542 weeks
15639.82631 25.64556 (156*2π)/3542 weeks
157-24.72427 27.07533 (157*2π)/3542 weeks
158-7.64846 -44.52886 (158*2π)/3542 weeks
15947.74717 -14.91452 (159*2π)/3542 weeks
1606.65684 17.44081 (160*2π)/3542 weeks
161-4.9318 -32.59228 (161*2π)/3542 weeks
16243.22065 -24.44084 (162*2π)/3542 weeks
16315.06073 13.44574 (163*2π)/3542 weeks
164-12.46945 -25.5642 (164*2π)/3542 weeks
16517.94545 -43.72567 (165*2π)/3542 weeks
16618.94285 -30.53578 (166*2π)/3542 weeks
1677.00996 -59.96326 (167*2π)/3542 weeks
16867.75346 -87.21037 (168*2π)/3542 weeks
16999.77316 -15.31153 (169*2π)/3542 weeks
17040.15456 -6.69509 (170*2π)/3542 weeks
17164.76945 -52.007 (171*2π)/3542 weeks
172110.6255 -12.21298 (172*2π)/3542 weeks
17379.25153 38.32614 (173*2π)/3542 weeks
17438.57041 24.44419 (174*2π)/3542 weeks
17542.40672 5.05768 (175*2π)/3542 weeks
17642.10201 11.57484 (176*2π)/3542 weeks
17729.25858   (177*2π)/3542 weeks
17842.10201 -11.57484 (178*2π)/3542 weeks
17942.40672 -5.05768 (179*2π)/3542 weeks
18038.57041 -24.44419 (180*2π)/3542 weeks
18179.25153 -38.32614 (181*2π)/3542 weeks
182110.6255 12.21298 (182*2π)/3542 weeks
18364.76945 52.007 (183*2π)/3542 weeks
18440.15456 6.69509 (184*2π)/3542 weeks
18599.77316 15.31153 (185*2π)/3542 weeks
18667.75346 87.21037 (186*2π)/3542 weeks
1877.00996 59.96326 (187*2π)/3542 weeks
18818.94285 30.53578 (188*2π)/3542 weeks
18917.94545 43.72567 (189*2π)/3542 weeks
190-12.46945 25.5642 (190*2π)/3542 weeks
19115.06073 -13.44574 (191*2π)/3542 weeks
19243.22065 24.44084 (192*2π)/3542 weeks
193-4.9318 32.59228 (193*2π)/3542 weeks
1946.65684 -17.44081 (194*2π)/3542 weeks
19547.74717 14.91452 (195*2π)/3542 weeks
196-7.64846 44.52886 (196*2π)/3542 weeks
197-24.72427 -27.07533 (197*2π)/3542 weeks
19839.82631 -25.64556 (198*2π)/3542 weeks
19917.35438 7.72157 (199*2π)/3542 weeks
20017.45875 -28.85544 (200*2π)/3542 weeks
20158.83058 -13.0524 (201*2π)/3542 weeks
20244.71761 25.1943 (202*2π)/3542 weeks
20320.49002 12.85351 (203*2π)/3542 weeks
20443.61404 19.59248 (204*2π)/3542 weeks
205-1.80746 58.55603 (205*2π)/3542 weeks
206-43.83201 -6.45995 (206*2π)/3542 weeks
2079.93555 -33.64035 (207*2π)/3542 weeks
20811.79592 .48912 (208*2π)/3542 weeks
209-20.9347 -24.56177 (209*2π)/3542 weeks
21027.96664 -69.50706 (210*2π)/3542 weeks
21172.794 -3.03509 (211*2π)/3542 weeks
212.92586 16.22963 (212*2π)/3542 weeks
21316.24257 -43.71271 (213*2π)/3542 weeks
21453.09065 -5.51399 (214*2π)/3542 weeks
2155.35713 11.27837 (215*2π)/3542 weeks
216-1.72981 -42.82709 (216*2π)/3542 weeks
21754.08052 -42.39093 (217*2π)/3542 weeks
21836.39114 -7.17115 (218*2π)/3542 weeks
21948.35146 -44.94491 (219*2π)/3542 weeks
22099.41156 8.78429 (220*2π)/3542 weeks
22137.71033 70.53709 (221*2π)/3542 weeks
222-27.21862 23.21987 (222*2π)/3542 weeks
2238.3037 -16.35591 (223*2π)/3542 weeks
224-4.192 17.50923 (224*2π)/3542 weeks
225-36.32858 -38.91901 (225*2π)/3542 weeks
22620.55898 -53.3452 (226*2π)/3542 weeks
227-4.37454 -40.99697 (227*2π)/3542 weeks
22837.73613 -110.8641 (228*2π)/3542 weeks
229135.089 -42.02887 (229*2π)/3542 weeks
23072.1082 50.0813 (230*2π)/3542 weeks
23116.09366 5.16009 (231*2π)/3542 weeks
23247.12761 -5.66624 (232*2π)/3542 weeks
23331.9402 17.12478 (233*2π)/3542 weeks
23422.85112 6.33536 (234*2π)/3542 weeks
23511.99396 23.94813 (235*2π)/3542 weeks
236-38.536 1.34421 (236*2π)/3542 weeks
237-30.58513 -72.37551 (237*2π)/3541 weeks
23850.91867 -90.07034 (238*2π)/3541 weeks
23969.80387 -9.59915 (239*2π)/3541 weeks
240-8.39633 -26.64587 (240*2π)/3541 weeks
24149.06535 -101.1648 (241*2π)/3541 weeks
242111.7652 -38.4691 (242*2π)/3541 weeks
24380.46893 -6.77462 (243*2π)/3541 weeks
244100.4074 -2.96285 (244*2π)/3541 weeks
24582.52971 66.73504 (245*2π)/3541 weeks
246-4.93799 51.37165 (246*2π)/3541 weeks
24717.81435 -19.85528 (247*2π)/3541 weeks
24865.8777 38.93763 (248*2π)/3541 weeks
249-40.45636 80.03402 (249*2π)/3541 weeks
250-90.0722 -47.43845 (250*2π)/3541 weeks
25119.73421 -95.43602 (251*2π)/3541 weeks
25234.25894 -21.66381 (252*2π)/3541 weeks
253-6.47692 -54.55545 (253*2π)/3541 weeks
25440.45658 -66.51806 (254*2π)/3541 weeks
25516.13374 -55.25742 (255*2π)/3541 weeks
25652.23508 -125.061 (256*2π)/3541 weeks
257154.093 -71.41602 (257*2π)/3541 weeks
258104.4238 15.50826 (258*2π)/3541 weeks
25978.40347 -44.90752 (259*2π)/3541 weeks
260168.5318 -14.30043 (260*2π)/3541 weeks
261136.5753 84.61336 (261*2π)/3541 weeks
26279.61675 94.83626 (262*2π)/3541 weeks
26346.18078 109.0895 (263*2π)/3541 weeks
264-24.1072 102.5699 (264*2π)/3541 weeks
265-54.37756 11.74786 (265*2π)/3541 weeks
26638.60901 -14.80551 (266*2π)/3541 weeks
26722.23211 84.02498 (267*2π)/3541 weeks
268-81.71336 25.95787 (268*2π)/3541 weeks
269-10.34088 -67.19885 (269*2π)/3541 weeks
27059.77807 -1.57001 (270*2π)/3541 weeks
2711.53562 47.35671 (271*2π)/3541 weeks
272-32.73779 -1.94137 (272*2π)/3541 weeks
273-3.76674 -22.80718 (273*2π)/3541 weeks
274.2442 -30.27938 (274*2π)/3541 weeks
27554.94769 -50.86122 (275*2π)/3541 weeks
276112.7251 41.85622 (276*2π)/3541 weeks
27715.27576 134.6352 (277*2π)/3541 weeks
278-69.03583 63.25481 (278*2π)/3541 weeks
279-13.63208 52.63694 (279*2π)/3541 weeks
280-90.63184 133.5394 (280*2π)/3541 weeks
281-205.1214 40.26092 (281*2π)/3541 weeks
282-182.9878 -45.75755 (282*2π)/3541 weeks
283-196.0545 -100.818 (283*2π)/3541 weeks
284-134.0519 -202.2757 (284*2π)/3541 weeks
285-32.00114 -176.6471 (285*2π)/3541 weeks
286-55.69266 -147.8104 (286*2π)/3541 weeks
287-18.65905 -206.8331 (287*2π)/3541 weeks
28847.19448 -160.9779 (288*2π)/3541 weeks
28920.81574 -145.5756 (289*2π)/3541 weeks
29072.04732 -162.8118 (290*2π)/3541 weeks
29174.49389 -79.88056 (291*2π)/3541 weeks
292-2.17218 -122.0165 (292*2π)/3541 weeks
29396.45763 -188.8852 (293*2π)/3541 weeks
294166.9209 -51.49554 (294*2π)/3541 weeks
29511.65484 15.74267 (295*2π)/3541 weeks
296-20.80546 -140.373 (296*2π)/3541 weeks
297110.1703 -103.209 (297*2π)/3541 weeks
298-14.85605 -16.62855 (298*2π)/3541 weeks
299-69.55383 -218.8868 (299*2π)/3541 weeks
300158.6589 -258.7794 (300*2π)/3541 weeks
301150.789 -77.10702 (301*2π)/3541 weeks
30253.4931 -200.7903 (302*2π)/3541 weeks
303308.0294 -239.7241 (303*2π)/3541 weeks
304324.9022 63.04612 (304*2π)/3541 weeks
30579.03689 34.51284 (305*2π)/3541 weeks
306213.9146 -127.1639 (306*2π)/3541 weeks
307333.7656 118.1415 (307*2π)/3541 weeks
30864.43498 202.5144 (308*2π)/3541 weeks
30990.147 4.84749 (309*2π)/3541 weeks
310194.1898 209.3549 (310*2π)/3541 weeks
311-141.3875 245.2003 (311*2π)/3541 weeks
312-103.6081 -77.99154 (312*2π)/3541 weeks
313109.2734 79.79536 (313*2π)/3541 weeks
314-194.4185 201.8595 (314*2π)/3541 weeks
315-275.7524 -186.4417 (315*2π)/3541 weeks
31658.71058 -218.4168 (316*2π)/3541 weeks
3173.31114 -45.90215 (317*2π)/3541 weeks
318-19.44473 -201.1245 (318*2π)/3541 weeks
319215.9603 -157.7298 (319*2π)/3541 weeks
320149.2713 110.5878 (320*2π)/3541 weeks
321-84.04715 -9.14058 (321*2π)/3541 weeks
322141.619 -161.2399 (322*2π)/3541 weeks
323215.3803 187.5639 (323*2π)/3541 weeks
324-202.5463 200.2559 (324*2π)/3541 weeks
325-139.1945 -180.2079 (325*2π)/3541 weeks
326128.3788 -9.95917 (326*2π)/3541 weeks
327-137.0927 147.1391 (327*2π)/3541 weeks
328-196.1939 -131.3721 (328*2π)/3541 weeks
329-11.58463 -39.80568 (329*2π)/3541 weeks
330-315.7039 2.74408 (330*2π)/3541 weeks
331-250.5129 -479.8474 (331*2π)/3541 weeks
332274.9575 -339.7306 (332*2π)/3541 weeks
33318.99277 67.06417 (333*2π)/3541 weeks
334-157.6067 -358.5774 (334*2π)/3541 weeks
335408.2595 -300.1128 (335*2π)/3541 weeks
336206.9991 275.4177 (336*2π)/3541 weeks
337-170.6759 29.58553 (337*2π)/3541 weeks
33898.05782 60.76072 (338*2π)/3541 weeks
339-392.9092 381.0294 (339*2π)/3541 weeks
340-721.0927 -380.7809 (340*2π)/3541 weeks
34159.79837 -539.7727 (341*2π)/3541 weeks
342-103.994 162.5898 (342*2π)/3541 weeks
343-718.3197 -214.7831 (343*2π)/3541 weeks
344-412.4449 -632.1456 (344*2π)/3541 weeks
345-303.4563 -445.8517 (345*2π)/3541 weeks
346-631.1303 -477.9402 (346*2π)/3541 weeks
347-813.7075 -919.0331 (347*2π)/3541 weeks
348-966.9979 -1,328.637 (348*2π)/3541 weeks
349-890.6447 -2,748.688 (349*2π)/3541 weeks
3501,428.19 -3,502.407 (350*2π)/3541 weeks
3512,549.738 -1,322.116 (351*2π)/3541 weeks
352679.5443 -1,221.456 (352*2π)/3541 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.