Back to list of Stocks    See Also: Seasonal Analysis of DCIXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of DCIX (Diana Containerships Inc)


DCIX (Diana Containerships Inc) appears to have interesting cyclic behaviour every 34 weeks (18.6557*sine), 31 weeks (16.9041*sine), and 18 weeks (6.6333*cosine).

DCIX (Diana Containerships Inc) has an average price of 166.53 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/3/2011 to 7/17/2017 for DCIX (Diana Containerships Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0166.5285   0 
1-8.23568 112.9557 (1*2π)/342342 weeks
217.72635 38.73752 (2*2π)/342171 weeks
333.39925 30.24666 (3*2π)/342114 weeks
424.19353 27.78351 (4*2π)/34286 weeks
510.78457 42.07114 (5*2π)/34268 weeks
622.3767 35.89793 (6*2π)/34257 weeks
7-2.94047 36.30118 (7*2π)/34249 weeks
8-4.06645 22.62258 (8*2π)/34243 weeks
9-.3334 22.12528 (9*2π)/34238 weeks
10-1.97834 18.65569 (10*2π)/34234 weeks
11-3.49123 16.90411 (11*2π)/34231 weeks
12-1.96621 6.49592 (12*2π)/34229 weeks
13.70925 8.91675 (13*2π)/34226 weeks
142.17561 11.59225 (14*2π)/34224 weeks
15-3.47555 10.01812 (15*2π)/34223 weeks
163.13867 1.67462 (16*2π)/34221 weeks
17.77475 5.15567 (17*2π)/34220 weeks
186.20417 2.47485 (18*2π)/34219 weeks
196.63327 8.81693 (19*2π)/34218 weeks
203.11732 10.96048 (20*2π)/34217 weeks
21.44853 3.82921 (21*2π)/34216 weeks
225.88697 5.09473 (22*2π)/34216 weeks
234.36131 5.89547 (23*2π)/34215 weeks
243.56135 7.40812 (24*2π)/34214 weeks
254.93304 7.20588 (25*2π)/34214 weeks
262.59709 11.01283 (26*2π)/34213 weeks
27.79776 7.38768 (27*2π)/34213 weeks
281.82896 7.47047 (28*2π)/34212 weeks
29-1.40612 7.09164 (29*2π)/34212 weeks
301.04196 4.49469 (30*2π)/34211 weeks
311.10384 4.71646 (31*2π)/34211 weeks
32.50125 4.3211 (32*2π)/34211 weeks
33.79686 4.40705 (33*2π)/34210 weeks
341.63824 2.65768 (34*2π)/34210 weeks
351.42386 2.20464 (35*2π)/34210 weeks
361.87215 4.35904 (36*2π)/34210 weeks
372.69805 2.94818 (37*2π)/3429 weeks
383.75173 2.9068 (38*2π)/3429 weeks
393.79285 3.50108 (39*2π)/3429 weeks
402.77135 5.43292 (40*2π)/3429 weeks
411.53437 3.791 (41*2π)/3428 weeks
42.98831 5.67089 (42*2π)/3428 weeks
431.25669 1.86349 (43*2π)/3428 weeks
441.55874 4.16864 (44*2π)/3428 weeks
45.55324 2.94138 (45*2π)/3428 weeks
461.83719 3.62907 (46*2π)/3427 weeks
47.97373 2.35139 (47*2π)/3427 weeks
482.41697 1.50927 (48*2π)/3427 weeks
494.32571 2.57306 (49*2π)/3427 weeks
502.56436 3.12311 (50*2π)/3427 weeks
511.67319 3.1131 (51*2π)/3427 weeks
523.34777 3.73497 (52*2π)/3427 weeks
531.83495 3.25024 (53*2π)/3426 weeks
541.18041 3.46225 (54*2π)/3426 weeks
552.0965 3.8141 (55*2π)/3426 weeks
56-.33257 3.02703 (56*2π)/3426 weeks
572.33698 1.90173 (57*2π)/3426 weeks
582.69576 2.27176 (58*2π)/3426 weeks
591.7356 2.80427 (59*2π)/3426 weeks
60.5745 2.72081 (60*2π)/3426 weeks
61.723 1.18821 (61*2π)/3426 weeks
622.26423 2.34553 (62*2π)/3426 weeks
631.04802 1.55233 (63*2π)/3425 weeks
641.8627 1.1037 (64*2π)/3425 weeks
652.74674 1.74604 (65*2π)/3425 weeks
662.14357 2.92919 (66*2π)/3425 weeks
672.33086 1.96949 (67*2π)/3425 weeks
682.12886 1.40893 (68*2π)/3425 weeks
692.95058 1.39033 (69*2π)/3425 weeks
702.5523 2.65167 (70*2π)/3425 weeks
712.25379 3.23689 (71*2π)/3425 weeks
72.02825 1.33053 (72*2π)/3425 weeks
732.72142 1.89056 (73*2π)/3425 weeks
742.40003 2.52242 (74*2π)/3425 weeks
752.15953 2.61903 (75*2π)/3425 weeks
761.2793 2.12228 (76*2π)/3425 weeks
771.44738 1.53215 (77*2π)/3424 weeks
781.31224 1.99478 (78*2π)/3424 weeks
791.97241 .64553 (79*2π)/3424 weeks
801.59956 1.85164 (80*2π)/3424 weeks
81.85649 .31895 (81*2π)/3424 weeks
822.17305 -.44714 (82*2π)/3424 weeks
834.43901 2.28848 (83*2π)/3424 weeks
842.39172 3.17451 (84*2π)/3424 weeks
852.44273 1.9455 (85*2π)/3424 weeks
862.52479 2.30528 (86*2π)/3424 weeks
872.09328 2.65771 (87*2π)/3424 weeks
882.31938 1.90195 (88*2π)/3424 weeks
891.10897 3.0008 (89*2π)/3424 weeks
901.08147 1.92436 (90*2π)/3424 weeks
911.07027 1.55311 (91*2π)/3424 weeks
92.56885 1.40074 (92*2π)/3424 weeks
931.16733 .95138 (93*2π)/3424 weeks
941.64449 1.06509 (94*2π)/3424 weeks
951.84665 2.35304 (95*2π)/3424 weeks
961.57757 .68853 (96*2π)/3424 weeks
971.29901 .85896 (97*2π)/3424 weeks
982.19719 1.37904 (98*2π)/3423 weeks
991.67219 1.2467 (99*2π)/3423 weeks
1001.28226 .8375 (100*2π)/3423 weeks
1012.35852 1.16174 (101*2π)/3423 weeks
1021.49932 1.46491 (102*2π)/3423 weeks
1031.42277 1.03103 (103*2π)/3423 weeks
1042.50257 1.32804 (104*2π)/3423 weeks
1051.64699 2.42132 (105*2π)/3423 weeks
1061.1845 .94798 (106*2π)/3423 weeks
1071.16232 .20396 (107*2π)/3423 weeks
1082.38947 1.47143 (108*2π)/3423 weeks
1091.24424 1.25346 (109*2π)/3423 weeks
1101.45072 1.00245 (110*2π)/3423 weeks
1111.37669 1.17143 (111*2π)/3423 weeks
112.90969 .41624 (112*2π)/3423 weeks
1131.766 .8026 (113*2π)/3423 weeks
1141.8021 .33607 (114*2π)/3423 weeks
1151.82058 1.12423 (115*2π)/3423 weeks
1161.74301 .80529 (116*2π)/3423 weeks
1171.99893 -.17255 (117*2π)/3423 weeks
1182.57281 .81509 (118*2π)/3423 weeks
1191.93659 1.58041 (119*2π)/3423 weeks
1201.4295 1.1493 (120*2π)/3423 weeks
1212.21634 .70399 (121*2π)/3423 weeks
1222.08082 1.55491 (122*2π)/3423 weeks
1231.87238 1.34316 (123*2π)/3423 weeks
1241.43665 1.62177 (124*2π)/3423 weeks
1251.15994 .97951 (125*2π)/3423 weeks
1261.50965 1.07743 (126*2π)/3423 weeks
127.9072 .41978 (127*2π)/3423 weeks
1282.03345 .56688 (128*2π)/3423 weeks
1291.03015 .71578 (129*2π)/3423 weeks
1301.42759 .46204 (130*2π)/3423 weeks
1312.02711 1.07555 (131*2π)/3423 weeks
1321.14069 1.00774 (132*2π)/3423 weeks
1331.5822 .66328 (133*2π)/3423 weeks
1341.41873 .72604 (134*2π)/3423 weeks
1351.1701 .51262 (135*2π)/3423 weeks
136.81311 .69487 (136*2π)/3423 weeks
1371.8288 .20033 (137*2π)/3422 weeks
1381.63794 -.01555 (138*2π)/3422 weeks
1391.47406 .36629 (139*2π)/3422 weeks
1401.54774 1.16836 (140*2π)/3422 weeks
1411.38238 -.27132 (141*2π)/3422 weeks
1422.3635 .07167 (142*2π)/3422 weeks
1432.42334 .87937 (143*2π)/3422 weeks
1441.36475 .3073 (144*2π)/3422 weeks
1451.47352 .64171 (145*2π)/3422 weeks
1461.3834 .43401 (146*2π)/3422 weeks
1472.04188 .4351 (147*2π)/3422 weeks
1481.47325 1.0156 (148*2π)/3422 weeks
1491.59918 .16937 (149*2π)/3422 weeks
1501.17387 .61543 (150*2π)/3422 weeks
1511.52324 .23421 (151*2π)/3422 weeks
1522.07529 .55051 (152*2π)/3422 weeks
1531.7522 .03432 (153*2π)/3422 weeks
1541.48741 .48489 (154*2π)/3422 weeks
1551.5267 .36857 (155*2π)/3422 weeks
1561.51522 .51184 (156*2π)/3422 weeks
1571.34182 .85203 (157*2π)/3422 weeks
1581.42138 .61249 (158*2π)/3422 weeks
159.85603 .09233 (159*2π)/3422 weeks
1601.03184 .50339 (160*2π)/3422 weeks
1611.7849 -.1355 (161*2π)/3422 weeks
1621.50613 .19688 (162*2π)/3422 weeks
1631.54153 .04011 (163*2π)/3422 weeks
1641.51559 -.39304 (164*2π)/3422 weeks
1652.19664 .05378 (165*2π)/3422 weeks
1661.06037 .33527 (166*2π)/3422 weeks
1671.44378 .00661 (167*2π)/3422 weeks
1681.838 .68852 (168*2π)/3422 weeks
169.82096 -.08457 (169*2π)/3422 weeks
1701.22496 -.10844 (170*2π)/3422 weeks
1711.97699   (171*2π)/3422 weeks
1721.22496 .10844 (172*2π)/3422 weeks
173.82096 .08457 (173*2π)/3422 weeks
1741.838 -.68852 (174*2π)/3422 weeks
1751.44378 -.00661 (175*2π)/3422 weeks
1761.06037 -.33527 (176*2π)/3422 weeks
1772.19664 -.05378 (177*2π)/3422 weeks
1781.51559 .39304 (178*2π)/3422 weeks
1791.54153 -.04011 (179*2π)/3422 weeks
1801.50613 -.19688 (180*2π)/3422 weeks
1811.7849 .1355 (181*2π)/3422 weeks
1821.03184 -.50339 (182*2π)/3422 weeks
183.85603 -.09233 (183*2π)/3422 weeks
1841.42138 -.61249 (184*2π)/3422 weeks
1851.34182 -.85203 (185*2π)/3422 weeks
1861.51522 -.51184 (186*2π)/3422 weeks
1871.5267 -.36857 (187*2π)/3422 weeks
1881.48741 -.48489 (188*2π)/3422 weeks
1891.7522 -.03432 (189*2π)/3422 weeks
1902.07529 -.55051 (190*2π)/3422 weeks
1911.52324 -.23421 (191*2π)/3422 weeks
1921.17387 -.61543 (192*2π)/3422 weeks
1931.59918 -.16937 (193*2π)/3422 weeks
1941.47325 -1.0156 (194*2π)/3422 weeks
1952.04188 -.4351 (195*2π)/3422 weeks
1961.3834 -.43401 (196*2π)/3422 weeks
1971.47352 -.64171 (197*2π)/3422 weeks
1981.36475 -.3073 (198*2π)/3422 weeks
1992.42334 -.87937 (199*2π)/3422 weeks
2002.3635 -.07167 (200*2π)/3422 weeks
2011.38238 .27132 (201*2π)/3422 weeks
2021.54774 -1.16836 (202*2π)/3422 weeks
2031.47406 -.36629 (203*2π)/3422 weeks
2041.63794 .01555 (204*2π)/3422 weeks
2051.8288 -.20033 (205*2π)/3422 weeks
206.81311 -.69487 (206*2π)/3422 weeks
2071.1701 -.51262 (207*2π)/3422 weeks
2081.41873 -.72604 (208*2π)/3422 weeks
2091.5822 -.66328 (209*2π)/3422 weeks
2101.14069 -1.00774 (210*2π)/3422 weeks
2112.02711 -1.07555 (211*2π)/3422 weeks
2121.42759 -.46204 (212*2π)/3422 weeks
2131.03015 -.71578 (213*2π)/3422 weeks
2142.03345 -.56688 (214*2π)/3422 weeks
215.9072 -.41978 (215*2π)/3422 weeks
2161.50965 -1.07743 (216*2π)/3422 weeks
2171.15994 -.97951 (217*2π)/3422 weeks
2181.43665 -1.62177 (218*2π)/3422 weeks
2191.87238 -1.34316 (219*2π)/3422 weeks
2202.08082 -1.55491 (220*2π)/3422 weeks
2212.21634 -.70399 (221*2π)/3422 weeks
2221.4295 -1.1493 (222*2π)/3422 weeks
2231.93659 -1.58041 (223*2π)/3422 weeks
2242.57281 -.81509 (224*2π)/3422 weeks
2251.99893 .17255 (225*2π)/3422 weeks
2261.74301 -.80529 (226*2π)/3422 weeks
2271.82058 -1.12423 (227*2π)/3422 weeks
2281.8021 -.33607 (228*2π)/3422 weeks
2291.766 -.8026 (229*2π)/3421 weeks
230.90969 -.41624 (230*2π)/3421 weeks
2311.37669 -1.17143 (231*2π)/3421 weeks
2321.45072 -1.00245 (232*2π)/3421 weeks
2331.24424 -1.25346 (233*2π)/3421 weeks
2342.38947 -1.47143 (234*2π)/3421 weeks
2351.16232 -.20396 (235*2π)/3421 weeks
2361.1845 -.94798 (236*2π)/3421 weeks
2371.64699 -2.42132 (237*2π)/3421 weeks
2382.50257 -1.32804 (238*2π)/3421 weeks
2391.42277 -1.03103 (239*2π)/3421 weeks
2401.49932 -1.46491 (240*2π)/3421 weeks
2412.35852 -1.16174 (241*2π)/3421 weeks
2421.28226 -.8375 (242*2π)/3421 weeks
2431.67219 -1.2467 (243*2π)/3421 weeks
2442.19719 -1.37904 (244*2π)/3421 weeks
2451.29901 -.85896 (245*2π)/3421 weeks
2461.57757 -.68853 (246*2π)/3421 weeks
2471.84665 -2.35304 (247*2π)/3421 weeks
2481.64449 -1.06509 (248*2π)/3421 weeks
2491.16733 -.95138 (249*2π)/3421 weeks
250.56885 -1.40074 (250*2π)/3421 weeks
2511.07027 -1.55311 (251*2π)/3421 weeks
2521.08147 -1.92436 (252*2π)/3421 weeks
2531.10897 -3.0008 (253*2π)/3421 weeks
2542.31938 -1.90195 (254*2π)/3421 weeks
2552.09328 -2.65771 (255*2π)/3421 weeks
2562.52479 -2.30528 (256*2π)/3421 weeks
2572.44273 -1.9455 (257*2π)/3421 weeks
2582.39172 -3.17451 (258*2π)/3421 weeks
2594.43901 -2.28848 (259*2π)/3421 weeks
2602.17305 .44714 (260*2π)/3421 weeks
261.85649 -.31895 (261*2π)/3421 weeks
2621.59956 -1.85164 (262*2π)/3421 weeks
2631.97241 -.64553 (263*2π)/3421 weeks
2641.31224 -1.99478 (264*2π)/3421 weeks
2651.44738 -1.53215 (265*2π)/3421 weeks
2661.2793 -2.12228 (266*2π)/3421 weeks
2672.15953 -2.61903 (267*2π)/3421 weeks
2682.40003 -2.52242 (268*2π)/3421 weeks
2692.72142 -1.89056 (269*2π)/3421 weeks
270.02825 -1.33053 (270*2π)/3421 weeks
2712.25379 -3.23689 (271*2π)/3421 weeks
2722.5523 -2.65167 (272*2π)/3421 weeks
2732.95058 -1.39033 (273*2π)/3421 weeks
2742.12886 -1.40893 (274*2π)/3421 weeks
2752.33086 -1.96949 (275*2π)/3421 weeks
2762.14357 -2.92919 (276*2π)/3421 weeks
2772.74674 -1.74604 (277*2π)/3421 weeks
2781.8627 -1.1037 (278*2π)/3421 weeks
2791.04802 -1.55233 (279*2π)/3421 weeks
2802.26423 -2.34553 (280*2π)/3421 weeks
281.723 -1.18821 (281*2π)/3421 weeks
282.5745 -2.72081 (282*2π)/3421 weeks
2831.7356 -2.80427 (283*2π)/3421 weeks
2842.69576 -2.27176 (284*2π)/3421 weeks
2852.33698 -1.90173 (285*2π)/3421 weeks
286-.33257 -3.02703 (286*2π)/3421 weeks
2872.0965 -3.8141 (287*2π)/3421 weeks
2881.18041 -3.46225 (288*2π)/3421 weeks
2891.83495 -3.25024 (289*2π)/3421 weeks
2903.34777 -3.73497 (290*2π)/3421 weeks
2911.67319 -3.1131 (291*2π)/3421 weeks
2922.56436 -3.12311 (292*2π)/3421 weeks
2934.32571 -2.57306 (293*2π)/3421 weeks
2942.41697 -1.50927 (294*2π)/3421 weeks
295.97373 -2.35139 (295*2π)/3421 weeks
2961.83719 -3.62907 (296*2π)/3421 weeks
297.55324 -2.94138 (297*2π)/3421 weeks
2981.55874 -4.16864 (298*2π)/3421 weeks
2991.25669 -1.86349 (299*2π)/3421 weeks
300.98831 -5.67089 (300*2π)/3421 weeks
3011.53437 -3.791 (301*2π)/3421 weeks
3022.77135 -5.43292 (302*2π)/3421 weeks
3033.79285 -3.50108 (303*2π)/3421 weeks
3043.75173 -2.9068 (304*2π)/3421 weeks
3052.69805 -2.94818 (305*2π)/3421 weeks
3061.87215 -4.35904 (306*2π)/3421 weeks
3071.42386 -2.20464 (307*2π)/3421 weeks
3081.63824 -2.65768 (308*2π)/3421 weeks
309.79686 -4.40705 (309*2π)/3421 weeks
310.50125 -4.3211 (310*2π)/3421 weeks
3111.10384 -4.71646 (311*2π)/3421 weeks
3121.04196 -4.49469 (312*2π)/3421 weeks
313-1.40612 -7.09164 (313*2π)/3421 weeks
3141.82896 -7.47047 (314*2π)/3421 weeks
315.79776 -7.38768 (315*2π)/3421 weeks
3162.59709 -11.01283 (316*2π)/3421 weeks
3174.93304 -7.20588 (317*2π)/3421 weeks
3183.56135 -7.40812 (318*2π)/3421 weeks
3194.36131 -5.89547 (319*2π)/3421 weeks
3205.88697 -5.09473 (320*2π)/3421 weeks
321.44853 -3.82921 (321*2π)/3421 weeks
3223.11732 -10.96048 (322*2π)/3421 weeks
3236.63327 -8.81693 (323*2π)/3421 weeks
3246.20417 -2.47485 (324*2π)/3421 weeks
325.77475 -5.15567 (325*2π)/3421 weeks
3263.13867 -1.67462 (326*2π)/3421 weeks
327-3.47555 -10.01812 (327*2π)/3421 weeks
3282.17561 -11.59225 (328*2π)/3421 weeks
329.70925 -8.91675 (329*2π)/3421 weeks
330-1.96621 -6.49592 (330*2π)/3421 weeks
331-3.49123 -16.90411 (331*2π)/3421 weeks
332-1.97834 -18.65569 (332*2π)/3421 weeks
333-.3334 -22.12528 (333*2π)/3421 weeks
334-4.06645 -22.62258 (334*2π)/3421 weeks
335-2.94047 -36.30118 (335*2π)/3421 weeks
33622.3767 -35.89793 (336*2π)/3421 weeks
33710.78457 -42.07114 (337*2π)/3421 weeks
33824.19353 -27.78351 (338*2π)/3421 weeks
33933.39925 -30.24666 (339*2π)/3421 weeks
34017.72635 -38.73752 (340*2π)/3421 weeks



Back to list of Stocks