Back to list of Stocks    See Also: Seasonal Analysis of DATAGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of DATA (Tableau Software)


DATA (Tableau Software) appears to have interesting cyclic behaviour every 24 weeks (5.6939*sine), 20 weeks (2.8291*cosine), and 20 weeks (2.8106*sine).

DATA (Tableau Software) has an average price of 70.42 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 5/17/2013 to 11/6/2017 for DATA (Tableau Software), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
070.42136   0 
1-13.38325 12.62807 (1*2π)/235235 weeks
214.00726 -4.47804 (2*2π)/235118 weeks
3-6.47139 2.63515 (3*2π)/23578 weeks
41.83419 -4.64583 (4*2π)/23559 weeks
5-1.42816 -4.94114 (5*2π)/23547 weeks
6.48515 -.15927 (6*2π)/23539 weeks
72.31219 2.21033 (7*2π)/23534 weeks
8-3.92819 -3.17445 (8*2π)/23529 weeks
9-1.08027 1.22134 (9*2π)/23526 weeks
10-1.60881 -5.69393 (10*2π)/23524 weeks
111.02092 .15101 (11*2π)/23521 weeks
122.82914 -2.8106 (12*2π)/23520 weeks
13-.7638 .95385 (13*2π)/23518 weeks
14-1.24682 .19131 (14*2π)/23517 weeks
15-.93152 -1.76394 (15*2π)/23516 weeks
16-.0764 -.21365 (16*2π)/23515 weeks
171.38789 .00388 (17*2π)/23514 weeks
18.33657 .74655 (18*2π)/23513 weeks
19-.60412 .40595 (19*2π)/23512 weeks
20-.50537 -1.73498 (20*2π)/23512 weeks
21-1.18077 .34879 (21*2π)/23511 weeks
22-.3571 -.39521 (22*2π)/23511 weeks
23-.29023 -1.00429 (23*2π)/23510 weeks
24.19336 .30272 (24*2π)/23510 weeks
25.09172 -.72177 (25*2π)/2359 weeks
26-1.51735 .37913 (26*2π)/2359 weeks
27.1504 -.90664 (27*2π)/2359 weeks
28-.51885 -.21003 (28*2π)/2358 weeks
29-.05718 -.01084 (29*2π)/2358 weeks
30-.4276 -.98296 (30*2π)/2358 weeks
31.41064 .37977 (31*2π)/2358 weeks
32-.75107 -.34438 (32*2π)/2357 weeks
33-.31424 -.92236 (33*2π)/2357 weeks
34.53691 .5687 (34*2π)/2357 weeks
35-.22193 -.88876 (35*2π)/2357 weeks
36-.07771 -.21458 (36*2π)/2357 weeks
37.61622 .08767 (37*2π)/2356 weeks
38-.47094 -.23944 (38*2π)/2356 weeks
39-.55223 -.0246 (39*2π)/2356 weeks
40-.18132 .06581 (40*2π)/2356 weeks
41.16791 -.49429 (41*2π)/2356 weeks
42-.05732 .69376 (42*2π)/2356 weeks
43-.25238 -.54594 (43*2π)/2355 weeks
44.14656 .69711 (44*2π)/2355 weeks
45-.05352 -.20802 (45*2π)/2355 weeks
46-.64186 .1954 (46*2π)/2355 weeks
47.04333 -.09001 (47*2π)/2355 weeks
48-.05353 -.31515 (48*2π)/2355 weeks
49-.27135 -.03108 (49*2π)/2355 weeks
50-.16677 .26904 (50*2π)/2355 weeks
51-.93264 -.41299 (51*2π)/2355 weeks
52.43386 -.15701 (52*2π)/2355 weeks
53-.50685 -.61341 (53*2π)/2354 weeks
54.07695 .10705 (54*2π)/2354 weeks
55-.07515 -.05963 (55*2π)/2354 weeks
56-.18145 -.47441 (56*2π)/2354 weeks
57.06809 .58445 (57*2π)/2354 weeks
58-.0081 -.76554 (58*2π)/2354 weeks
59-.25668 .19489 (59*2π)/2354 weeks
60.52655 -.58247 (60*2π)/2354 weeks
61-.78493 .01262 (61*2π)/2354 weeks
62.61761 .12465 (62*2π)/2354 weeks
63-.45871 -.23684 (63*2π)/2354 weeks
64.4296 -.10542 (64*2π)/2354 weeks
65.14632 -.18963 (65*2π)/2354 weeks
66-.23395 .31178 (66*2π)/2354 weeks
67.21188 .04318 (67*2π)/2354 weeks
68.06766 -.14153 (68*2π)/2353 weeks
69-.22645 .18282 (69*2π)/2353 weeks
70-.13574 -.64805 (70*2π)/2353 weeks
71-.3836 .16033 (71*2π)/2353 weeks
72.06917 -.13372 (72*2π)/2353 weeks
73-.13519 .13367 (73*2π)/2353 weeks
74-.27682 .11175 (74*2π)/2353 weeks
75.29616 .12549 (75*2π)/2353 weeks
76.1295 -.04742 (76*2π)/2353 weeks
77-.13339 .51442 (77*2π)/2353 weeks
78.21551 -.47227 (78*2π)/2353 weeks
79-.24116 .28038 (79*2π)/2353 weeks
80.36878 -.20352 (80*2π)/2353 weeks
81-.37669 -.17923 (81*2π)/2353 weeks
82.12823 .04598 (82*2π)/2353 weeks
83-.25854 -.05551 (83*2π)/2353 weeks
84.03617 .21428 (84*2π)/2353 weeks
85-.09242 .15687 (85*2π)/2353 weeks
86-.44866 .10026 (86*2π)/2353 weeks
87-.12552 -.11506 (87*2π)/2353 weeks
88-.17531 -.34484 (88*2π)/2353 weeks
89-.10662 .26883 (89*2π)/2353 weeks
90-.47384 -.32697 (90*2π)/2353 weeks
91-.04371 -.13009 (91*2π)/2353 weeks
92-.2199 -.12182 (92*2π)/2353 weeks
93.42548 -.32916 (93*2π)/2353 weeks
94-.32405 .0003 (94*2π)/2353 weeks
95.23562 .10664 (95*2π)/2352 weeks
96-.27107 -.27181 (96*2π)/2352 weeks
97.02948 .09638 (97*2π)/2352 weeks
98-.07648 -.289 (98*2π)/2352 weeks
99-.00682 .34141 (99*2π)/2352 weeks
100-.13374 -.02687 (100*2π)/2352 weeks
101-.42025 -.04576 (101*2π)/2352 weeks
102.392 -.09848 (102*2π)/2352 weeks
103-.06285 -.08848 (103*2π)/2352 weeks
104-.29981 .0865 (104*2π)/2352 weeks
105.06854 .03363 (105*2π)/2352 weeks
106-.53902 .02005 (106*2π)/2352 weeks
107.34231 .23239 (107*2π)/2352 weeks
108-.27214 .23172 (108*2π)/2352 weeks
109-.06433 .06708 (109*2π)/2352 weeks
110.04335 .41829 (110*2π)/2352 weeks
111-.27082 -.37735 (111*2π)/2352 weeks
112-.00031 .13445 (112*2π)/2352 weeks
113-.23401 .04911 (113*2π)/2352 weeks
114-.29506 -.00984 (114*2π)/2352 weeks
115-.03853 .13279 (115*2π)/2352 weeks
116-.32746 -.3988 (116*2π)/2352 weeks
117-.22844 .22727 (117*2π)/2352 weeks
118-.22844 -.22727 (118*2π)/2352 weeks
119-.32746 .3988 (119*2π)/2352 weeks
120-.03853 -.13279 (120*2π)/2352 weeks
121-.29506 .00984 (121*2π)/2352 weeks
122-.23401 -.04911 (122*2π)/2352 weeks
123-.00031 -.13445 (123*2π)/2352 weeks
124-.27082 .37735 (124*2π)/2352 weeks
125.04335 -.41829 (125*2π)/2352 weeks
126-.06433 -.06708 (126*2π)/2352 weeks
127-.27214 -.23172 (127*2π)/2352 weeks
128.34231 -.23239 (128*2π)/2352 weeks
129-.53902 -.02005 (129*2π)/2352 weeks
130.06854 -.03363 (130*2π)/2352 weeks
131-.29981 -.0865 (131*2π)/2352 weeks
132-.06285 .08848 (132*2π)/2352 weeks
133.392 .09848 (133*2π)/2352 weeks
134-.42025 .04576 (134*2π)/2352 weeks
135-.13374 .02687 (135*2π)/2352 weeks
136-.00682 -.34141 (136*2π)/2352 weeks
137-.07648 .289 (137*2π)/2352 weeks
138.02948 -.09638 (138*2π)/2352 weeks
139-.27107 .27181 (139*2π)/2352 weeks
140.23562 -.10664 (140*2π)/2352 weeks
141-.32405 -.0003 (141*2π)/2352 weeks
142.42548 .32916 (142*2π)/2352 weeks
143-.2199 .12182 (143*2π)/2352 weeks
144-.04371 .13009 (144*2π)/2352 weeks
145-.47384 .32697 (145*2π)/2352 weeks
146-.10662 -.26883 (146*2π)/2352 weeks
147-.17531 .34484 (147*2π)/2352 weeks
148-.12552 .11506 (148*2π)/2352 weeks
149-.44866 -.10026 (149*2π)/2352 weeks
150-.09242 -.15687 (150*2π)/2352 weeks
151.03617 -.21428 (151*2π)/2352 weeks
152-.25854 .05551 (152*2π)/2352 weeks
153.12823 -.04598 (153*2π)/2352 weeks
154-.37669 .17923 (154*2π)/2352 weeks
155.36878 .20352 (155*2π)/2352 weeks
156-.24116 -.28038 (156*2π)/2352 weeks
157.21551 .47227 (157*2π)/2351 weeks
158-.13339 -.51442 (158*2π)/2351 weeks
159.1295 .04742 (159*2π)/2351 weeks
160.29616 -.12549 (160*2π)/2351 weeks
161-.27682 -.11175 (161*2π)/2351 weeks
162-.13519 -.13367 (162*2π)/2351 weeks
163.06917 .13372 (163*2π)/2351 weeks
164-.3836 -.16033 (164*2π)/2351 weeks
165-.13574 .64805 (165*2π)/2351 weeks
166-.22645 -.18282 (166*2π)/2351 weeks
167.06766 .14153 (167*2π)/2351 weeks
168.21188 -.04318 (168*2π)/2351 weeks
169-.23395 -.31178 (169*2π)/2351 weeks
170.14632 .18963 (170*2π)/2351 weeks
171.4296 .10542 (171*2π)/2351 weeks
172-.45871 .23684 (172*2π)/2351 weeks
173.61761 -.12465 (173*2π)/2351 weeks
174-.78493 -.01262 (174*2π)/2351 weeks
175.52655 .58247 (175*2π)/2351 weeks
176-.25668 -.19489 (176*2π)/2351 weeks
177-.0081 .76554 (177*2π)/2351 weeks
178.06809 -.58445 (178*2π)/2351 weeks
179-.18145 .47441 (179*2π)/2351 weeks
180-.07515 .05963 (180*2π)/2351 weeks
181.07695 -.10705 (181*2π)/2351 weeks
182-.50685 .61341 (182*2π)/2351 weeks
183.43386 .15701 (183*2π)/2351 weeks
184-.93264 .41299 (184*2π)/2351 weeks
185-.16677 -.26904 (185*2π)/2351 weeks
186-.27135 .03108 (186*2π)/2351 weeks
187-.05353 .31515 (187*2π)/2351 weeks
188.04333 .09001 (188*2π)/2351 weeks
189-.64186 -.1954 (189*2π)/2351 weeks
190-.05352 .20802 (190*2π)/2351 weeks
191.14656 -.69711 (191*2π)/2351 weeks
192-.25238 .54594 (192*2π)/2351 weeks
193-.05732 -.69376 (193*2π)/2351 weeks
194.16791 .49429 (194*2π)/2351 weeks
195-.18132 -.06581 (195*2π)/2351 weeks
196-.55223 .0246 (196*2π)/2351 weeks
197-.47094 .23944 (197*2π)/2351 weeks
198.61622 -.08767 (198*2π)/2351 weeks
199-.07771 .21458 (199*2π)/2351 weeks
200-.22193 .88876 (200*2π)/2351 weeks
201.53691 -.5687 (201*2π)/2351 weeks
202-.31424 .92236 (202*2π)/2351 weeks
203-.75107 .34438 (203*2π)/2351 weeks
204.41064 -.37977 (204*2π)/2351 weeks
205-.4276 .98296 (205*2π)/2351 weeks
206-.05718 .01084 (206*2π)/2351 weeks
207-.51885 .21003 (207*2π)/2351 weeks
208.1504 .90664 (208*2π)/2351 weeks
209-1.51735 -.37913 (209*2π)/2351 weeks
210.09172 .72177 (210*2π)/2351 weeks
211.19336 -.30272 (211*2π)/2351 weeks
212-.29023 1.00429 (212*2π)/2351 weeks
213-.3571 .39521 (213*2π)/2351 weeks
214-1.18077 -.34879 (214*2π)/2351 weeks
215-.50537 1.73498 (215*2π)/2351 weeks
216-.60412 -.40595 (216*2π)/2351 weeks
217.33657 -.74655 (217*2π)/2351 weeks
2181.38789 -.00388 (218*2π)/2351 weeks
219-.0764 .21365 (219*2π)/2351 weeks
220-.93152 1.76394 (220*2π)/2351 weeks
221-1.24682 -.19131 (221*2π)/2351 weeks
222-.7638 -.95385 (222*2π)/2351 weeks
2232.82914 2.8106 (223*2π)/2351 weeks
2241.02092 -.15101 (224*2π)/2351 weeks
225-1.60881 5.69393 (225*2π)/2351 weeks
226-1.08027 -1.22134 (226*2π)/2351 weeks
227-3.92819 3.17445 (227*2π)/2351 weeks
2282.31219 -2.21033 (228*2π)/2351 weeks
229.48515 .15927 (229*2π)/2351 weeks
230-1.42816 4.94114 (230*2π)/2351 weeks
2311.83419 4.64583 (231*2π)/2351 weeks
232-6.47139 -2.63515 (232*2π)/2351 weeks
23314.00726 4.47804 (233*2π)/2351 weeks



Back to list of Stocks