Back to list of Stocks    See Also: Seasonal Analysis of CIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of CI (Cigna Corporation Common Stock)


CI (Cigna Corporation Common Stock) appears to have interesting cyclic behaviour every 151 weeks (5.3399*sine), 140 weeks (3.7402*sine), and 182 weeks (3.6054*sine).

CI (Cigna Corporation Common Stock) has an average price of 28.44 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/31/1982 to 1/9/2017 for CI (Cigna Corporation Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
028.44393   0 
115.59769 -23.3172 (1*2π)/18151,815 weeks
213.5126 -13.82537 (2*2π)/1815908 weeks
37.01827 -13.55284 (3*2π)/1815605 weeks
47.0511 -14.99861 (4*2π)/1815454 weeks
5-1.46141 -12.76208 (5*2π)/1815363 weeks
6.78279 -6.52832 (6*2π)/1815303 weeks
71.89916 -9.09039 (7*2π)/1815259 weeks
8-1.7242 -7.73021 (8*2π)/1815227 weeks
9-1.439 -5.61144 (9*2π)/1815202 weeks
10-1.62629 -3.60541 (10*2π)/1815182 weeks
11.59187 -3.16621 (11*2π)/1815165 weeks
12-.27507 -5.33986 (12*2π)/1815151 weeks
13-2.12808 -3.74019 (13*2π)/1815140 weeks
14-1.38573 -2.17508 (14*2π)/1815130 weeks
15-.38599 -2.03267 (15*2π)/1815121 weeks
16-.94437 -2.57972 (16*2π)/1815113 weeks
17-1.41247 -1.30135 (17*2π)/1815107 weeks
18-.00779 -.41594 (18*2π)/1815101 weeks
191.43033 -.99285 (19*2π)/181596 weeks
20.50701 -2.46385 (20*2π)/181591 weeks
21.58739 -1.28321 (21*2π)/181586 weeks
22.30967 -2.59102 (22*2π)/181583 weeks
23.00147 -1.02537 (23*2π)/181579 weeks
241.02631 -2.00726 (24*2π)/181576 weeks
25.13632 -2.12192 (25*2π)/181573 weeks
26.24914 -2.25886 (26*2π)/181570 weeks
27-.76574 -1.6095 (27*2π)/181567 weeks
28.51705 -1.1739 (28*2π)/181565 weeks
29-.14203 -1.89866 (29*2π)/181563 weeks
30-.13599 -1.50675 (30*2π)/181561 weeks
31-.21985 -1.5743 (31*2π)/181559 weeks
32-.2382 -1.38317 (32*2π)/181557 weeks
33-.16858 -1.307 (33*2π)/181555 weeks
34-.49416 -1.29164 (34*2π)/181553 weeks
35-.22488 -.66049 (35*2π)/181552 weeks
36-.00244 -.98706 (36*2π)/181550 weeks
37-.07684 -.75158 (37*2π)/181549 weeks
38.19607 -1.00557 (38*2π)/181548 weeks
39-.16006 -.92962 (39*2π)/181547 weeks
40-.07024 -.44528 (40*2π)/181545 weeks
41.56601 -.7459 (41*2π)/181544 weeks
42.30218 -.97303 (42*2π)/181543 weeks
43.46621 -1.04104 (43*2π)/181542 weeks
44.13596 -.98439 (44*2π)/181541 weeks
45.50837 -1.16116 (45*2π)/181540 weeks
46.12337 -1.45735 (46*2π)/181539 weeks
47-.27891 -1.16847 (47*2π)/181539 weeks
48-.11925 -.93155 (48*2π)/181538 weeks
49-.15905 -.82467 (49*2π)/181537 weeks
50.29641 -.98815 (50*2π)/181536 weeks
51-.15558 -1.20191 (51*2π)/181536 weeks
52-.27702 -.92833 (52*2π)/181535 weeks
53-.30503 -.64165 (53*2π)/181534 weeks
54.16629 -.77967 (54*2π)/181534 weeks
55-.13609 -.85431 (55*2π)/181533 weeks
56-.27009 -.75109 (56*2π)/181532 weeks
57.07281 -.43385 (57*2π)/181532 weeks
58.22864 -.97115 (58*2π)/181531 weeks
59-.34895 -1.01764 (59*2π)/181531 weeks
60-.38398 -.37536 (60*2π)/181530 weeks
61.13858 -.55284 (61*2π)/181530 weeks
62-.20856 -.70729 (62*2π)/181529 weeks
63-.0841 -.49494 (63*2π)/181529 weeks
64-.11035 -.42533 (64*2π)/181528 weeks
65.19606 -.31571 (65*2π)/181528 weeks
66.1137 -.43378 (66*2π)/181528 weeks
67.36833 -.54616 (67*2π)/181527 weeks
68.08322 -.74735 (68*2π)/181527 weeks
69.2143 -.50182 (69*2π)/181526 weeks
70.26048 -.79233 (70*2π)/181526 weeks
71.24873 -.80102 (71*2π)/181526 weeks
72-.13106 -.97497 (72*2π)/181525 weeks
73-.0902 -.54414 (73*2π)/181525 weeks
74-.00922 -.74997 (74*2π)/181525 weeks
75-.07137 -.72895 (75*2π)/181524 weeks
76-.21159 -.70367 (76*2π)/181524 weeks
77-.20541 -.51469 (77*2π)/181524 weeks
78-.1241 -.40044 (78*2π)/181523 weeks
79.03855 -.3661 (79*2π)/181523 weeks
80.1891 -.62561 (80*2π)/181523 weeks
81-.13244 -.65766 (81*2π)/181522 weeks
82.0062 -.46917 (82*2π)/181522 weeks
83.05451 -.59302 (83*2π)/181522 weeks
84-.03076 -.73558 (84*2π)/181522 weeks
85-.33611 -.62868 (85*2π)/181521 weeks
86-.17804 -.20107 (86*2π)/181521 weeks
87.09552 -.31197 (87*2π)/181521 weeks
88.13343 -.50782 (88*2π)/181521 weeks
89-.05698 -.4018 (89*2π)/181520 weeks
90.17373 -.41952 (90*2π)/181520 weeks
91.03594 -.49935 (91*2π)/181520 weeks
92.22841 -.39032 (92*2π)/181520 weeks
93.13697 -.7251 (93*2π)/181520 weeks
94.09873 -.59671 (94*2π)/181519 weeks
95.00638 -.72566 (95*2π)/181519 weeks
96.05843 -.60464 (96*2π)/181519 weeks
97-.06969 -.82509 (97*2π)/181519 weeks
98-.33014 -.50914 (98*2π)/181519 weeks
99.05672 -.38057 (99*2π)/181518 weeks
100.0273 -.74724 (100*2π)/181518 weeks
101-.16338 -.62293 (101*2π)/181518 weeks
102-.29458 -.6677 (102*2π)/181518 weeks
103-.25635 -.26678 (103*2π)/181518 weeks
104.04792 -.53127 (104*2π)/181517 weeks
105-.24241 -.65358 (105*2π)/181517 weeks
106-.30487 -.40166 (106*2π)/181517 weeks
107-.25882 -.27435 (107*2π)/181517 weeks
108.01335 -.28396 (108*2π)/181517 weeks
109-.11779 -.46328 (109*2π)/181517 weeks
110-.23038 -.39625 (110*2π)/181517 weeks
111-.17182 -.11245 (111*2π)/181516 weeks
112.2633 -.29205 (112*2π)/181516 weeks
113.05144 -.59712 (113*2π)/181516 weeks
114-.10598 -.50406 (114*2π)/181516 weeks
115-.15439 -.40055 (115*2π)/181516 weeks
116.01805 -.38726 (116*2π)/181516 weeks
117-.12406 -.61575 (117*2π)/181516 weeks
118-.21353 -.38455 (118*2π)/181515 weeks
119-.1645 -.45595 (119*2π)/181515 weeks
120-.21748 -.34525 (120*2π)/181515 weeks
121-.2369 -.3692 (121*2π)/181515 weeks
122-.15391 -.24596 (122*2π)/181515 weeks
123-.18215 -.31455 (123*2π)/181515 weeks
124-.12205 -.2635 (124*2π)/181515 weeks
125-.21974 -.24786 (125*2π)/181515 weeks
126-.06453 -.17623 (126*2π)/181514 weeks
127-.1154 -.22202 (127*2π)/181514 weeks
128-.0241 -.15532 (128*2π)/181514 weeks
129.00855 -.20438 (129*2π)/181514 weeks
130.02233 -.23071 (130*2π)/181514 weeks
131.10172 -.21291 (131*2π)/181514 weeks
132.15202 -.33648 (132*2π)/181514 weeks
133.1304 -.38919 (133*2π)/181514 weeks
134.04215 -.46499 (134*2π)/181514 weeks
135.02396 -.47351 (135*2π)/181513 weeks
136-.08579 -.44253 (136*2π)/181513 weeks
137-.04825 -.37692 (137*2π)/181513 weeks
138.0602 -.46851 (138*2π)/181513 weeks
139-.16646 -.60164 (139*2π)/181513 weeks
140-.20343 -.3804 (140*2π)/181513 weeks
141-.14554 -.3841 (141*2π)/181513 weeks
142-.21783 -.43904 (142*2π)/181513 weeks
143-.26867 -.31004 (143*2π)/181513 weeks
144-.21952 -.27322 (144*2π)/181513 weeks
145-.1637 -.23 (145*2π)/181513 weeks
146-.1493 -.27664 (146*2π)/181512 weeks
147-.20204 -.23311 (147*2π)/181512 weeks
148-.103 -.24442 (148*2π)/181512 weeks
149-.23007 -.25302 (149*2π)/181512 weeks
150-.11291 -.1431 (150*2π)/181512 weeks
151-.18652 -.17544 (151*2π)/181512 weeks
152-.00256 -.08777 (152*2π)/181512 weeks
153-.02734 -.2805 (153*2π)/181512 weeks
154-.09231 -.20328 (154*2π)/181512 weeks
155-.08675 -.21414 (155*2π)/181512 weeks
156-.07185 -.13978 (156*2π)/181512 weeks
157.04751 -.09434 (157*2π)/181512 weeks
158.2047 -.23746 (158*2π)/181511 weeks
159-.01412 -.42191 (159*2π)/181511 weeks
160.01023 -.26064 (160*2π)/181511 weeks
161.00517 -.41861 (161*2π)/181511 weeks
162-.1008 -.34686 (162*2π)/181511 weeks
163-.1036 -.31282 (163*2π)/181511 weeks
164-.04891 -.3027 (164*2π)/181511 weeks
165-.12519 -.36692 (165*2π)/181511 weeks
166-.13886 -.29019 (166*2π)/181511 weeks
167-.15369 -.27862 (167*2π)/181511 weeks
168-.08744 -.25221 (168*2π)/181511 weeks
169-.14862 -.33703 (169*2π)/181511 weeks
170-.22111 -.25429 (170*2π)/181511 weeks
171-.20135 -.16869 (171*2π)/181511 weeks
172-.11952 -.15236 (172*2π)/181511 weeks
173-.15434 -.17232 (173*2π)/181510 weeks
174-.01788 -.06931 (174*2π)/181510 weeks
175-.01171 -.25279 (175*2π)/181510 weeks
176-.05597 -.20167 (176*2π)/181510 weeks
177-.07294 -.27184 (177*2π)/181510 weeks
178-.0962 -.20623 (178*2π)/181510 weeks
179-.09874 -.25494 (179*2π)/181510 weeks
180-.10935 -.21561 (180*2π)/181510 weeks
181-.1743 -.2162 (181*2π)/181510 weeks
182-.10445 -.12105 (182*2π)/181510 weeks
183-.09019 -.15182 (183*2π)/181510 weeks
184-.03462 -.18826 (184*2π)/181510 weeks
185-.16492 -.21665 (185*2π)/181510 weeks
186-.09756 -.06879 (186*2π)/181510 weeks
187-.06633 -.15487 (187*2π)/181510 weeks
188-.0617 -.11991 (188*2π)/181510 weeks
189-.01707 -.12779 (189*2π)/181510 weeks
190-.01553 -.15659 (190*2π)/181510 weeks
191-.09021 -.23822 (191*2π)/181510 weeks
192-.14074 -.0247 (192*2π)/18159 weeks
193.07409 -.04967 (193*2π)/18159 weeks
194.02409 -.10207 (194*2π)/18159 weeks
195.07405 -.17895 (195*2π)/18159 weeks
196.01143 -.14169 (196*2π)/18159 weeks
197.11961 -.16633 (197*2π)/18159 weeks
198.05583 -.25861 (198*2π)/18159 weeks
199.03619 -.28354 (199*2π)/18159 weeks
200-.04713 -.25941 (200*2π)/18159 weeks
201-.01805 -.22458 (201*2π)/18159 weeks
202-.03796 -.22194 (202*2π)/18159 weeks
203-.01663 -.23601 (203*2π)/18159 weeks
204-.0876 -.20624 (204*2π)/18159 weeks
205-.01512 -.14996 (205*2π)/18159 weeks
206-.00873 -.15047 (206*2π)/18159 weeks
207.10394 -.245 (207*2π)/18159 weeks
208-.05896 -.2752 (208*2π)/18159 weeks
209.0215 -.22343 (209*2π)/18159 weeks
210.00739 -.28176 (210*2π)/18159 weeks
211-.05476 -.37295 (211*2π)/18159 weeks
212-.17255 -.28135 (212*2π)/18159 weeks
213-.18412 -.20611 (213*2π)/18159 weeks
214-.08124 -.13209 (214*2π)/18158 weeks
215-.12644 -.20209 (215*2π)/18158 weeks
216-.09397 -.11643 (216*2π)/18158 weeks
217-.15361 -.12977 (217*2π)/18158 weeks
218-.01491 .03433 (218*2π)/18158 weeks
219.11128 -.11077 (219*2π)/18158 weeks
220.09224 -.18113 (220*2π)/18158 weeks
221.05959 -.22662 (221*2π)/18158 weeks
222.06594 -.22962 (222*2π)/18158 weeks
223-.00375 -.33055 (223*2π)/18158 weeks
224-.06202 -.24821 (224*2π)/18158 weeks
225-.08155 -.2229 (225*2π)/18158 weeks
226-.03079 -.14793 (226*2π)/18158 weeks
227.02655 -.2741 (227*2π)/18158 weeks
228-.0761 -.20865 (228*2π)/18158 weeks
229-.02895 -.23548 (229*2π)/18158 weeks
230-.10438 -.17105 (230*2π)/18158 weeks
231.00639 -.19028 (231*2π)/18158 weeks
232-.01373 -.20795 (232*2π)/18158 weeks
233-.01779 -.21374 (233*2π)/18158 weeks
234-.00883 -.25116 (234*2π)/18158 weeks
235-.06002 -.26819 (235*2π)/18158 weeks
236-.09428 -.16698 (236*2π)/18158 weeks
237-.01292 -.22219 (237*2π)/18158 weeks
238-.05553 -.21629 (238*2π)/18158 weeks
239-.0468 -.2458 (239*2π)/18158 weeks
240-.11541 -.16639 (240*2π)/18158 weeks
241.00492 -.18087 (241*2π)/18158 weeks
242-.04605 -.2518 (242*2π)/18158 weeks
243-.08285 -.21105 (243*2π)/18157 weeks
244-.07148 -.16195 (244*2π)/18157 weeks
245.02325 -.17126 (245*2π)/18157 weeks
246-.00039 -.27584 (246*2π)/18157 weeks
247-.03615 -.25463 (247*2π)/18157 weeks
248-.08833 -.23589 (248*2π)/18157 weeks
249-.04616 -.26165 (249*2π)/18157 weeks
250-.12965 -.23775 (250*2π)/18157 weeks
251-.05731 -.22249 (251*2π)/18157 weeks
252-.09252 -.21592 (252*2π)/18157 weeks
253-.04835 -.22106 (253*2π)/18157 weeks
254-.09875 -.26227 (254*2π)/18157 weeks
255-.0983 -.24832 (255*2π)/18157 weeks
256-.18215 -.25432 (256*2π)/18157 weeks
257-.14904 -.16953 (257*2π)/18157 weeks
258-.12086 -.17466 (258*2π)/18157 weeks
259-.08965 -.22098 (259*2π)/18157 weeks
260-.20335 -.21289 (260*2π)/18157 weeks
261-.16952 -.11878 (261*2π)/18157 weeks
262-.16076 -.08696 (262*2π)/18157 weeks
263-.04646 -.08976 (263*2π)/18157 weeks
264-.09897 -.14528 (264*2π)/18157 weeks
265-.05662 -.08679 (265*2π)/18157 weeks
266-.04017 -.15312 (266*2π)/18157 weeks
267-.03711 -.1495 (267*2π)/18157 weeks
268-.08169 -.21169 (268*2π)/18157 weeks
269-.11929 -.10937 (269*2π)/18157 weeks
270-.04691 -.08603 (270*2π)/18157 weeks
271.02034 -.14537 (271*2π)/18157 weeks
272-.04813 -.21377 (272*2π)/18157 weeks
273-.06394 -.1444 (273*2π)/18157 weeks
274-.02744 -.19442 (274*2π)/18157 weeks
275-.06735 -.18663 (275*2π)/18157 weeks
276-.07415 -.21734 (276*2π)/18157 weeks
277-.09334 -.12679 (277*2π)/18157 weeks
278-.03282 -.22206 (278*2π)/18157 weeks
279-.14344 -.15897 (279*2π)/18157 weeks
280-.03977 -.16861 (280*2π)/18156 weeks
281-.13948 -.20537 (281*2π)/18156 weeks
282-.12613 -.12636 (282*2π)/18156 weeks
283-.11766 -.09813 (283*2π)/18156 weeks
284-.03165 -.07803 (284*2π)/18156 weeks
285-.02802 -.15612 (285*2π)/18156 weeks
286-.04075 -.166 (286*2π)/18156 weeks
287-.0926 -.13249 (287*2π)/18156 weeks
288-.02176 -.13571 (288*2π)/18156 weeks
289-.02011 -.14002 (289*2π)/18156 weeks
290.00949 -.22739 (290*2π)/18156 weeks
291-.0795 -.19285 (291*2π)/18156 weeks
292-.00092 -.18895 (292*2π)/18156 weeks
293-.07049 -.25884 (293*2π)/18156 weeks
294-.08141 -.21335 (294*2π)/18156 weeks
295-.12072 -.27878 (295*2π)/18156 weeks
296-.16101 -.1341 (296*2π)/18156 weeks
297-.03625 -.21612 (297*2π)/18156 weeks
298-.12556 -.23797 (298*2π)/18156 weeks
299-.17315 -.24389 (299*2π)/18156 weeks
300-.18412 -.16534 (300*2π)/18156 weeks
301-.17369 -.19042 (301*2π)/18156 weeks
302-.23448 -.14836 (302*2π)/18156 weeks
303-.17775 -.08926 (303*2π)/18156 weeks
304-.19164 -.11558 (304*2π)/18156 weeks
305-.15784 -.03202 (305*2π)/18156 weeks
306-.15658 -.08806 (306*2π)/18156 weeks
307-.10572 .00829 (307*2π)/18156 weeks
308-.05456 -.1063 (308*2π)/18156 weeks
309-.11976 -.04896 (309*2π)/18156 weeks
310-.0526 -.0663 (310*2π)/18156 weeks
311-.05568 -.05817 (311*2π)/18156 weeks
312-.00821 -.10749 (312*2π)/18156 weeks
313-.05028 -.14109 (313*2π)/18156 weeks
314-.06377 -.14998 (314*2π)/18156 weeks
315-.12236 -.13853 (315*2π)/18156 weeks
316-.05035 -.06876 (316*2π)/18156 weeks
317-.07724 -.15182 (317*2π)/18156 weeks
318-.05756 -.09709 (318*2π)/18156 weeks
319-.09595 -.1622 (319*2π)/18156 weeks
320-.09002 -.10826 (320*2π)/18156 weeks
321-.08574 -.14211 (321*2π)/18156 weeks
322-.13497 -.119 (322*2π)/18156 weeks
323-.09506 -.08191 (323*2π)/18156 weeks
324-.11599 -.08782 (324*2π)/18156 weeks
325-.07772 -.06756 (325*2π)/18156 weeks
326-.11061 -.07384 (326*2π)/18156 weeks
327-.02845 -.04669 (327*2π)/18156 weeks
328-.08605 -.09053 (328*2π)/18156 weeks
329-.03689 -.03126 (329*2π)/18156 weeks
330-.01825 -.08209 (330*2π)/18156 weeks
331-.03023 -.08412 (331*2π)/18155 weeks
332-.01355 -.08758 (332*2π)/18155 weeks
333.00545 -.10329 (333*2π)/18155 weeks
334.03091 -.15101 (334*2π)/18155 weeks
335-.04559 -.16568 (335*2π)/18155 weeks
336-.01854 -.14398 (336*2π)/18155 weeks
337-.05721 -.17278 (337*2π)/18155 weeks
338-.06135 -.17083 (338*2π)/18155 weeks
339-.06824 -.14203 (339*2π)/18155 weeks
340-.04665 -.21126 (340*2π)/18155 weeks
341-.16683 -.15146 (341*2π)/18155 weeks
342-.07859 -.10974 (342*2π)/18155 weeks
343-.09057 -.12483 (343*2π)/18155 weeks
344-.10262 -.16699 (344*2π)/18155 weeks
345-.17132 -.08566 (345*2π)/18155 weeks
346-.05695 -.04269 (346*2π)/18155 weeks
347-.04207 -.10904 (347*2π)/18155 weeks
348-.0792 -.14441 (348*2π)/18155 weeks
349-.10645 -.09551 (349*2π)/18155 weeks
350-.06634 -.08001 (350*2π)/18155 weeks
351-.02911 -.1145 (351*2π)/18155 weeks
352-.13222 -.14801 (352*2π)/18155 weeks
353-.07392 -.03741 (353*2π)/18155 weeks
354-.05431 -.11797 (354*2π)/18155 weeks
355-.07435 -.07191 (355*2π)/18155 weeks
356-.04465 -.12313 (356*2π)/18155 weeks
357-.11451 -.06152 (357*2π)/18155 weeks
358-.02873 -.04481 (358*2π)/18155 weeks
359.0309 -.06882 (359*2π)/18155 weeks
360.00343 -.1899 (360*2π)/18155 weeks
361-.07969 -.11546 (361*2π)/18155 weeks
362.01578 -.13642 (362*2π)/18155 weeks
363-.05021 -.19787 (363*2π)/18155 weeks
364-.06707 -.20827 (364*2π)/18155 weeks
365-.1625 -.19309 (365*2π)/18155 weeks
366-.13774 -.11951 (366*2π)/18155 weeks
367-.16426 -.10925 (367*2π)/18155 weeks
368-.07965 -.07454 (368*2π)/18155 weeks
369-.13636 -.13428 (369*2π)/18155 weeks
370-.12368 -.03783 (370*2π)/18155 weeks
371-.08221 -.06615 (371*2π)/18155 weeks
372-.06334 -.03889 (372*2π)/18155 weeks
373-.05871 -.11962 (373*2π)/18155 weeks
374-.10019 -.06202 (374*2π)/18155 weeks
375-.06536 -.0791 (375*2π)/18155 weeks
376-.0385 -.06978 (376*2π)/18155 weeks
377-.05414 -.10793 (377*2π)/18155 weeks
378-.05577 -.11788 (378*2π)/18155 weeks
379-.09923 -.06906 (379*2π)/18155 weeks
380-.02887 -.09148 (380*2π)/18155 weeks
381-.06505 -.10845 (381*2π)/18155 weeks
382-.04119 -.11528 (382*2π)/18155 weeks
383-.09592 -.13266 (383*2π)/18155 weeks
384-.05776 -.08317 (384*2π)/18155 weeks
385-.07104 -.12129 (385*2π)/18155 weeks
386-.08177 -.12372 (386*2π)/18155 weeks
387-.09579 -.0844 (387*2π)/18155 weeks
388-.07741 -.10647 (388*2π)/18155 weeks
389-.10395 -.08467 (389*2π)/18155 weeks
390-.09061 -.08515 (390*2π)/18155 weeks
391-.09823 -.08163 (391*2π)/18155 weeks
392-.09778 -.04082 (392*2π)/18155 weeks
393-.05299 -.06626 (393*2π)/18155 weeks
394-.06088 -.06024 (394*2π)/18155 weeks
395-.03295 -.06701 (395*2π)/18155 weeks
396-.05473 -.06543 (396*2π)/18155 weeks
397-.01476 -.07432 (397*2π)/18155 weeks
398-.04548 -.11126 (398*2π)/18155 weeks
399-.04879 -.1061 (399*2π)/18155 weeks
400-.0647 -.10655 (400*2π)/18155 weeks
401-.08046 -.11299 (401*2π)/18155 weeks
402-.07277 -.0568 (402*2π)/18155 weeks
403-.03997 -.09648 (403*2π)/18155 weeks
404-.07594 -.08368 (404*2π)/18154 weeks
405-.05746 -.08909 (405*2π)/18154 weeks
406-.07674 -.08297 (406*2π)/18154 weeks
407-.0415 -.07202 (407*2π)/18154 weeks
408-.0647 -.11527 (408*2π)/18154 weeks
409-.11092 -.07869 (409*2π)/18154 weeks
410-.06192 -.0308 (410*2π)/18154 weeks
411-.04697 -.06476 (411*2π)/18154 weeks
412-.05235 -.0539 (412*2π)/18154 weeks
413-.04032 -.04939 (413*2π)/18154 weeks
414-.02994 -.05564 (414*2π)/18154 weeks
415-.02934 -.03257 (415*2π)/18154 weeks
416.05658 -.05674 (416*2π)/18154 weeks
417.00159 -.13988 (417*2π)/18154 weeks
418-.04518 -.09016 (418*2π)/18154 weeks
419-.01121 -.08535 (419*2π)/18154 weeks
420.00646