Back to list of Stocks    See Also: Seasonal Analysis of CHMTGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of CHMT (Chemtura Corp)


CHMT (Chemtura Corp) appears to have interesting cyclic behaviour every 29 weeks (12.1758*cosine), 35 weeks (11.9425*cosine), and 23 weeks (11.8336*cosine).

CHMT (Chemtura Corp) has an average price of 29.12 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 10/26/2010 to 7/17/2017 for CHMT (Chemtura Corp), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
029.12345   0 
111.48221 -6.48268 (1*2π)/348348 weeks
213.65769 -3.41462 (2*2π)/348174 weeks
313.14496 -.74209 (3*2π)/348116 weeks
412.48127 -1.29442 (4*2π)/34887 weeks
510.82267 -.70878 (5*2π)/34870 weeks
611.56596 .27886 (6*2π)/34858 weeks
711.0934 .12713 (7*2π)/34850 weeks
811.46381 -.49725 (8*2π)/34844 weeks
912.63523 .1228 (9*2π)/34839 weeks
1011.94248 .29377 (10*2π)/34835 weeks
1111.84907 1.14484 (11*2π)/34832 weeks
1212.17583 .86138 (12*2π)/34829 weeks
1311.76893 .71947 (13*2π)/34827 weeks
1411.37013 .82765 (14*2π)/34825 weeks
1511.83357 1.76815 (15*2π)/34823 weeks
1611.59705 1.42252 (16*2π)/34822 weeks
1711.42389 1.04904 (17*2π)/34820 weeks
1811.72082 1.47042 (18*2π)/34819 weeks
1911.6345 1.90142 (19*2π)/34818 weeks
2011.5342 1.89845 (20*2π)/34817 weeks
2111.7431 1.89116 (21*2π)/34817 weeks
2211.42258 2.14669 (22*2π)/34816 weeks
2311.35293 2.10496 (23*2π)/34815 weeks
2411.41474 2.28906 (24*2π)/34815 weeks
2511.26179 2.12871 (25*2π)/34814 weeks
2611.34412 2.58783 (26*2π)/34813 weeks
2711.16626 2.55442 (27*2π)/34813 weeks
2811.33266 2.89194 (28*2π)/34812 weeks
2911.37937 2.81158 (29*2π)/34812 weeks
3011.04333 3.08857 (30*2π)/34812 weeks
3111.03352 2.85968 (31*2π)/34811 weeks
3210.97436 3.14451 (32*2π)/34811 weeks
3310.86884 3.21889 (33*2π)/34811 weeks
3410.73566 3.26662 (34*2π)/34810 weeks
3510.58137 3.31635 (35*2π)/34810 weeks
3610.87021 3.55396 (36*2π)/34810 weeks
3710.6736 3.65463 (37*2π)/3489 weeks
3810.67729 3.60816 (38*2π)/3489 weeks
3910.73575 3.78578 (39*2π)/3489 weeks
4010.4996 3.80755 (40*2π)/3489 weeks
4110.20001 3.75166 (41*2π)/3488 weeks
4210.17296 4.27874 (42*2π)/3488 weeks
4310.17478 4.00756 (43*2π)/3488 weeks
4410.0798 4.06514 (44*2π)/3488 weeks
4510.2974 4.3949 (45*2π)/3488 weeks
4610.12222 4.249 (46*2π)/3488 weeks
4710.01633 4.36007 (47*2π)/3487 weeks
489.87207 4.5587 (48*2π)/3487 weeks
499.77265 4.65258 (49*2π)/3487 weeks
509.50608 4.69424 (50*2π)/3487 weeks
519.44615 4.64503 (51*2π)/3487 weeks
529.50509 4.68466 (52*2π)/3487 weeks
539.49239 4.87171 (53*2π)/3487 weeks
549.36539 4.97106 (54*2π)/3486 weeks
559.24747 5.10771 (55*2π)/3486 weeks
569.18431 5.0223 (56*2π)/3486 weeks
579.00561 5.04069 (57*2π)/3486 weeks
588.87774 5.05414 (58*2π)/3486 weeks
598.76754 5.20005 (59*2π)/3486 weeks
608.68893 5.23958 (60*2π)/3486 weeks
618.58283 5.44761 (61*2π)/3486 weeks
628.61854 5.38843 (62*2π)/3486 weeks
638.5556 5.38374 (63*2π)/3486 weeks
648.35318 5.40382 (64*2π)/3485 weeks
658.22861 5.44769 (65*2π)/3485 weeks
668.08981 5.46978 (66*2π)/3485 weeks
678.14063 5.52949 (67*2π)/3485 weeks
687.9265 5.65407 (68*2π)/3485 weeks
697.82294 5.68865 (69*2π)/3485 weeks
707.79942 5.73326 (70*2π)/3485 weeks
717.67579 5.7614 (71*2π)/3485 weeks
727.57821 5.83583 (72*2π)/3485 weeks
737.36304 5.69006 (73*2π)/3485 weeks
747.27236 5.88354 (74*2π)/3485 weeks
757.22523 5.82712 (75*2π)/3485 weeks
767.13282 5.86937 (76*2π)/3485 weeks
776.9269 5.88169 (77*2π)/3485 weeks
786.91115 5.80046 (78*2π)/3484 weeks
796.7992 6.01298 (79*2π)/3484 weeks
806.65497 5.96336 (80*2π)/3484 weeks
816.62277 5.95132 (81*2π)/3484 weeks
826.42838 5.99443 (82*2π)/3484 weeks
836.35916 5.95685 (83*2π)/3484 weeks
846.25604 6.0577 (84*2π)/3484 weeks
856.12898 5.90441 (85*2π)/3484 weeks
865.93769 5.95006 (86*2π)/3484 weeks
875.80536 6.09061 (87*2π)/3484 weeks
885.83119 6.01749 (88*2π)/3484 weeks
895.75758 5.91321 (89*2π)/3484 weeks
905.58502 5.95195 (90*2π)/3484 weeks
915.504 5.97904 (91*2π)/3484 weeks
925.3317 6.01276 (92*2π)/3484 weeks
935.35283 5.90563 (93*2π)/3484 weeks
945.03635 5.91073 (94*2π)/3484 weeks
954.96581 5.9701 (95*2π)/3484 weeks
964.93308 5.95905 (96*2π)/3484 weeks
974.88422 5.92495 (97*2π)/3484 weeks
984.77972 5.81638 (98*2π)/3484 weeks
994.62921 5.85986 (99*2π)/3484 weeks
1004.46919 5.81572 (100*2π)/3483 weeks
1014.41623 5.81276 (101*2π)/3483 weeks
1024.26733 5.78257 (102*2π)/3483 weeks
1034.15933 5.72958 (103*2π)/3483 weeks
1044.1262 5.70185 (104*2π)/3483 weeks
1053.90801 5.73041 (105*2π)/3483 weeks
1063.9151 5.68481 (106*2π)/3483 weeks
1073.86652 5.60236 (107*2π)/3483 weeks
1083.66673 5.59559 (108*2π)/3483 weeks
1093.6331 5.46471 (109*2π)/3483 weeks
1103.47394 5.46215 (110*2π)/3483 weeks
1113.33877 5.54778 (111*2π)/3483 weeks
1123.28352 5.44407 (112*2π)/3483 weeks
1133.11932 5.36907 (113*2π)/3483 weeks
1143.09436 5.31852 (114*2π)/3483 weeks
1152.9168 5.22835 (115*2π)/3483 weeks
1162.93046 5.20564 (116*2π)/3483 weeks
1172.80397 5.10833 (117*2π)/3483 weeks
1182.71208 5.02672 (118*2π)/3483 weeks
1192.60569 5.08269 (119*2π)/3483 weeks
1202.5479 4.91358 (120*2π)/3483 weeks
1212.41066 4.9176 (121*2π)/3483 weeks
1222.34203 4.94102 (122*2π)/3483 weeks
1232.2757 4.76632 (123*2π)/3483 weeks
1242.13897 4.68929 (124*2π)/3483 weeks
1252.0873 4.60125 (125*2π)/3483 weeks
1262.00799 4.56724 (126*2π)/3483 weeks
1271.95122 4.50751 (127*2π)/3483 weeks
1281.87794 4.48192 (128*2π)/3483 weeks
1291.79323 4.39559 (129*2π)/3483 weeks
1301.61242 4.25828 (130*2π)/3483 weeks
1311.57464 4.26537 (131*2π)/3483 weeks
1321.53115 4.14649 (132*2π)/3483 weeks
1331.45036 3.99538 (133*2π)/3483 weeks
1341.39456 3.97536 (134*2π)/3483 weeks
1351.36789 3.88868 (135*2π)/3483 weeks
1361.27866 3.84172 (136*2π)/3483 weeks
1371.11466 3.76069 (137*2π)/3483 weeks
1381.07267 3.66701 (138*2π)/3483 weeks
1391.07835 3.53805 (139*2π)/3483 weeks
140.92919 3.48043 (140*2π)/3482 weeks
141.88699 3.38322 (141*2π)/3482 weeks
142.82154 3.32434 (142*2π)/3482 weeks
143.76183 3.0781 (143*2π)/3482 weeks
144.7447 3.09346 (144*2π)/3482 weeks
145.7248 3.09627 (145*2π)/3482 weeks
146.63431 2.84253 (146*2π)/3482 weeks
147.57207 2.82638 (147*2π)/3482 weeks
148.47981 2.70307 (148*2π)/3482 weeks
149.48243 2.57926 (149*2π)/3482 weeks
150.41251 2.56948 (150*2π)/3482 weeks
151.33005 2.38049 (151*2π)/3482 weeks
152.37464 2.34871 (152*2π)/3482 weeks
153.42031 2.26571 (153*2π)/3482 weeks
154.26086 2.08045 (154*2π)/3482 weeks
155.18296 2.02678 (155*2π)/3482 weeks
156.16493 1.97827 (156*2π)/3482 weeks
157.08996 1.71501 (157*2π)/3482 weeks
158.09857 1.75396 (158*2π)/3482 weeks
159.12983 1.59367 (159*2π)/3482 weeks
160.10526 1.53906 (160*2π)/3482 weeks
161.0996 1.37066 (161*2π)/3482 weeks
162.01735 1.28515 (162*2π)/3482 weeks
163-.03732 1.19284 (163*2π)/3482 weeks
164-.04852 1.10311 (164*2π)/3482 weeks
165-.06507 .95437 (165*2π)/3482 weeks
166-.07678 .87985 (166*2π)/3482 weeks
167-.09833 .71882 (167*2π)/3482 weeks
168-.09518 .63712 (168*2π)/3482 weeks
169-.0659 .58239 (169*2π)/3482 weeks
170-.08732 .47595 (170*2π)/3482 weeks
171-.09528 .30788 (171*2π)/3482 weeks
172-.16978 .14436 (172*2π)/3482 weeks
173-.135 .09961 (173*2π)/3482 weeks
174-.09111   (174*2π)/3482 weeks
175-.135 -.09961 (175*2π)/3482 weeks
176-.16978 -.14436 (176*2π)/3482 weeks
177-.09528 -.30788 (177*2π)/3482 weeks
178-.08732 -.47595 (178*2π)/3482 weeks
179-.0659 -.58239 (179*2π)/3482 weeks
180-.09518 -.63712 (180*2π)/3482 weeks
181-.09833 -.71882 (181*2π)/3482 weeks
182-.07678 -.87985 (182*2π)/3482 weeks
183-.06507 -.95437 (183*2π)/3482 weeks
184-.04852 -1.10311 (184*2π)/3482 weeks
185-.03732 -1.19284 (185*2π)/3482 weeks
186.01735 -1.28515 (186*2π)/3482 weeks
187.0996 -1.37066 (187*2π)/3482 weeks
188.10526 -1.53906 (188*2π)/3482 weeks
189.12983 -1.59367 (189*2π)/3482 weeks
190.09857 -1.75396 (190*2π)/3482 weeks
191.08996 -1.71501 (191*2π)/3482 weeks
192.16493 -1.97827 (192*2π)/3482 weeks
193.18296 -2.02678 (193*2π)/3482 weeks
194.26086 -2.08045 (194*2π)/3482 weeks
195.42031 -2.26571 (195*2π)/3482 weeks
196.37464 -2.34871 (196*2π)/3482 weeks
197.33005 -2.38049 (197*2π)/3482 weeks
198.41251 -2.56948 (198*2π)/3482 weeks
199.48243 -2.57926 (199*2π)/3482 weeks
200.47981 -2.70307 (200*2π)/3482 weeks
201.57207 -2.82638 (201*2π)/3482 weeks
202.63431 -2.84253 (202*2π)/3482 weeks
203.7248 -3.09627 (203*2π)/3482 weeks
204.7447 -3.09346 (204*2π)/3482 weeks
205.76183 -3.0781 (205*2π)/3482 weeks
206.82154 -3.32434 (206*2π)/3482 weeks
207.88699 -3.38322 (207*2π)/3482 weeks
208.92919 -3.48043 (208*2π)/3482 weeks
2091.07835 -3.53805 (209*2π)/3482 weeks
2101.07267 -3.66701 (210*2π)/3482 weeks
2111.11466 -3.76069 (211*2π)/3482 weeks
2121.27866 -3.84172 (212*2π)/3482 weeks
2131.36789 -3.88868 (213*2π)/3482 weeks
2141.39456 -3.97536 (214*2π)/3482 weeks
2151.45036 -3.99538 (215*2π)/3482 weeks
2161.53115 -4.14649 (216*2π)/3482 weeks
2171.57464 -4.26537 (217*2π)/3482 weeks
2181.61242 -4.25828 (218*2π)/3482 weeks
2191.79323 -4.39559 (219*2π)/3482 weeks
2201.87794 -4.48192 (220*2π)/3482 weeks
2211.95122 -4.50751 (221*2π)/3482 weeks
2222.00799 -4.56724 (222*2π)/3482 weeks
2232.0873 -4.60125 (223*2π)/3482 weeks
2242.13897 -4.68929 (224*2π)/3482 weeks
2252.2757 -4.76632 (225*2π)/3482 weeks
2262.34203 -4.94102 (226*2π)/3482 weeks
2272.41066 -4.9176 (227*2π)/3482 weeks
2282.5479 -4.91358 (228*2π)/3482 weeks
2292.60569 -5.08269 (229*2π)/3482 weeks
2302.71208 -5.02672 (230*2π)/3482 weeks
2312.80397 -5.10833 (231*2π)/3482 weeks
2322.93046 -5.20564 (232*2π)/3482 weeks
2332.9168 -5.22835 (233*2π)/3481 weeks
2343.09436 -5.31852 (234*2π)/3481 weeks
2353.11932 -5.36907 (235*2π)/3481 weeks
2363.28352 -5.44407 (236*2π)/3481 weeks
2373.33877 -5.54778 (237*2π)/3481 weeks
2383.47394 -5.46215 (238*2π)/3481 weeks
2393.6331 -5.46471 (239*2π)/3481 weeks
2403.66673 -5.59559 (240*2π)/3481 weeks
2413.86652 -5.60236 (241*2π)/3481 weeks
2423.9151 -5.68481 (242*2π)/3481 weeks
2433.90801 -5.73041 (243*2π)/3481 weeks
2444.1262 -5.70185 (244*2π)/3481 weeks
2454.15933 -5.72958 (245*2π)/3481 weeks
2464.26733 -5.78257 (246*2π)/3481 weeks
2474.41623 -5.81276 (247*2π)/3481 weeks
2484.46919 -5.81572 (248*2π)/3481 weeks
2494.62921 -5.85986 (249*2π)/3481 weeks
2504.77972 -5.81638 (250*2π)/3481 weeks
2514.88422 -5.92495 (251*2π)/3481 weeks
2524.93308 -5.95905 (252*2π)/3481 weeks
2534.96581 -5.9701 (253*2π)/3481 weeks
2545.03635 -5.91073 (254*2π)/3481 weeks
2555.35283 -5.90563 (255*2π)/3481 weeks
2565.3317 -6.01276 (256*2π)/3481 weeks
2575.504 -5.97904 (257*2π)/3481 weeks
2585.58502 -5.95195 (258*2π)/3481 weeks
2595.75758 -5.91321 (259*2π)/3481 weeks
2605.83119 -6.01749 (260*2π)/3481 weeks
2615.80536 -6.09061 (261*2π)/3481 weeks
2625.93769 -5.95006 (262*2π)/3481 weeks
2636.12898 -5.90441 (263*2π)/3481 weeks
2646.25604 -6.0577 (264*2π)/3481 weeks
2656.35916 -5.95685 (265*2π)/3481 weeks
2666.42838 -5.99443 (266*2π)/3481 weeks
2676.62277 -5.95132 (267*2π)/3481 weeks
2686.65497 -5.96336 (268*2π)/3481 weeks
2696.7992 -6.01298 (269*2π)/3481 weeks
2706.91115 -5.80046 (270*2π)/3481 weeks
2716.9269 -5.88169 (271*2π)/3481 weeks
2727.13282 -5.86937 (272*2π)/3481 weeks
2737.22523 -5.82712 (273*2π)/3481 weeks
2747.27236 -5.88354 (274*2π)/3481 weeks
2757.36304 -5.69006 (275*2π)/3481 weeks
2767.57821 -5.83583 (276*2π)/3481 weeks
2777.67579 -5.7614 (277*2π)/3481 weeks
2787.79942 -5.73326 (278*2π)/3481 weeks
2797.82294 -5.68865 (279*2π)/3481 weeks
2807.9265 -5.65407 (280*2π)/3481 weeks
2818.14063 -5.52949 (281*2π)/3481 weeks
2828.08981 -5.46978 (282*2π)/3481 weeks
2838.22861 -5.44769 (283*2π)/3481 weeks
2848.35318 -5.40382 (284*2π)/3481 weeks
2858.5556 -5.38374 (285*2π)/3481 weeks
2868.61854 -5.38843 (286*2π)/3481 weeks
2878.58283 -5.44761 (287*2π)/3481 weeks
2888.68893 -5.23958 (288*2π)/3481 weeks
2898.76754 -5.20005 (289*2π)/3481 weeks
2908.87774 -5.05414 (290*2π)/3481 weeks
2919.00561 -5.04069 (291*2π)/3481 weeks
2929.18431 -5.0223 (292*2π)/3481 weeks
2939.24747 -5.10771 (293*2π)/3481 weeks
2949.36539 -4.97106 (294*2π)/3481 weeks
2959.49239 -4.87171 (295*2π)/3481 weeks
2969.50509 -4.68466 (296*2π)/3481 weeks
2979.44615 -4.64503 (297*2π)/3481 weeks
2989.50608 -4.69424 (298*2π)/3481 weeks
2999.77265 -4.65258 (299*2π)/3481 weeks
3009.87207 -4.5587 (300*2π)/3481 weeks
30110.01633 -4.36007 (301*2π)/3481 weeks
30210.12222 -4.249 (302*2π)/3481 weeks
30310.2974 -4.3949 (303*2π)/3481 weeks
30410.0798 -4.06514 (304*2π)/3481 weeks
30510.17478 -4.00756 (305*2π)/3481 weeks
30610.17296 -4.27874 (306*2π)/3481 weeks
30710.20001 -3.75166 (307*2π)/3481 weeks
30810.4996 -3.80755 (308*2π)/3481 weeks
30910.73575 -3.78578 (309*2π)/3481 weeks
31010.67729 -3.60816 (310*2π)/3481 weeks
31110.6736 -3.65463 (311*2π)/3481 weeks
31210.87021 -3.55396 (312*2π)/3481 weeks
31310.58137 -3.31635 (313*2π)/3481 weeks
31410.73566 -3.26662 (314*2π)/3481 weeks
31510.86884 -3.21889 (315*2π)/3481 weeks
31610.97436 -3.14451 (316*2π)/3481 weeks
31711.03352 -2.85968 (317*2π)/3481 weeks
31811.04333 -3.08857 (318*2π)/3481 weeks
31911.37937 -2.81158 (319*2π)/3481 weeks
32011.33266 -2.89194 (320*2π)/3481 weeks
32111.16626 -2.55442 (321*2π)/3481 weeks
32211.34412 -2.58783 (322*2π)/3481 weeks
32311.26179 -2.12871 (323*2π)/3481 weeks
32411.41474 -2.28906 (324*2π)/3481 weeks
32511.35293 -2.10496 (325*2π)/3481 weeks
32611.42258 -2.14669 (326*2π)/3481 weeks
32711.7431 -1.89116 (327*2π)/3481 weeks
32811.5342 -1.89845 (328*2π)/3481 weeks
32911.6345 -1.90142 (329*2π)/3481 weeks
33011.72082 -1.47042 (330*2π)/3481 weeks
33111.42389 -1.04904 (331*2π)/3481 weeks
33211.59705 -1.42252 (332*2π)/3481 weeks
33311.83357 -1.76815 (333*2π)/3481 weeks
33411.37013 -.82765 (334*2π)/3481 weeks
33511.76893 -.71947 (335*2π)/3481 weeks
33612.17583 -.86138 (336*2π)/3481 weeks
33711.84907 -1.14484 (337*2π)/3481 weeks
33811.94248 -.29377 (338*2π)/3481 weeks
33912.63523 -.1228 (339*2π)/3481 weeks
34011.46381 .49725 (340*2π)/3481 weeks
34111.0934 -.12713 (341*2π)/3481 weeks
34211.56596 -.27886 (342*2π)/3481 weeks
34310.82267 .70878 (343*2π)/3481 weeks
34412.48127 1.29442 (344*2π)/3481 weeks
34513.14496 .74209 (345*2π)/3481 weeks
34613.65769 3.41462 (346*2π)/3481 weeks



Back to list of Stocks