Back to list of Stocks    See Also: Seasonal Analysis of BREGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of BRE (BRE Properties, Inc. Common Sto)


BRE (BRE Properties, Inc. Common Sto) appears to have interesting cyclic behaviour every 156 weeks (.189*sine), 167 weeks (.1866*sine), and 137 weeks (.1682*cosine).

BRE (BRE Properties, Inc. Common Sto) has an average price of .58 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/1/1972 to 3/20/2017 for BRE (BRE Properties, Inc. Common Sto), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.58052   0 
1.84231 -.76097 (1*2π)/23362,336 weeks
2.11936 -1.06918 (2*2π)/23361,168 weeks
3-.56812 -.81039 (3*2π)/2336779 weeks
4-.85397 -.20897 (4*2π)/2336584 weeks
5-.66951 .34176 (5*2π)/2336467 weeks
6-.23872 .56709 (6*2π)/2336389 weeks
7.1325 .45815 (7*2π)/2336334 weeks
8.27393 .20823 (8*2π)/2336292 weeks
9.22447 .02251 (9*2π)/2336260 weeks
10.13183 -.02916 (10*2π)/2336234 weeks
11.1038 -.01501 (11*2π)/2336212 weeks
12.12939 -.03457 (12*2π)/2336195 weeks
13.12962 -.11124 (13*2π)/2336180 weeks
14.05443 -.18656 (14*2π)/2336167 weeks
15-.06617 -.18898 (15*2π)/2336156 weeks
16-.15603 -.10863 (16*2π)/2336146 weeks
17-.16816 -.00044 (17*2π)/2336137 weeks
18-.11888 .07324 (18*2π)/2336130 weeks
19-.05935 .09457 (19*2π)/2336123 weeks
20-.02185 .09089 (20*2π)/2336117 weeks
21.00281 .09174 (21*2π)/2336111 weeks
22.03877 .09495 (22*2π)/2336106 weeks
23.08804 .0753 (23*2π)/2336102 weeks
24.12317 .01986 (24*2π)/233697 weeks
25.11509 -.05133 (25*2π)/233693 weeks
26.06434 -.10023 (26*2π)/233690 weeks
27.00167 -.10568 (27*2π)/233687 weeks
28-.04107 -.07892 (28*2π)/233683 weeks
29-.05675 -.04742 (29*2π)/233681 weeks
30-.06149 -.0264 (30*2π)/233678 weeks
31-.07021 -.00731 (31*2π)/233675 weeks
32-.07637 .02463 (32*2π)/233673 weeks
33-.06079 .06629 (33*2π)/233671 weeks
34-.01581 .0947 (34*2π)/233669 weeks
35.0409 .0873 (35*2π)/233667 weeks
36.07813 .04602 (36*2π)/233665 weeks
37.07995 -.00279 (37*2π)/233663 weeks
38.05767 -.03391 (38*2π)/233661 weeks
39.03408 -.0439 (39*2π)/233660 weeks
40.01929 -.04757 (40*2π)/233658 weeks
41.00406 -.05502 (41*2π)/233657 weeks
42-.02204 -.05825 (42*2π)/233656 weeks
43-.053 -.04237 (43*2π)/233654 weeks
44-.06898 -.00574 (44*2π)/233653 weeks
45-.05647 .0332 (45*2π)/233652 weeks
46-.02388 .05196 (46*2π)/233651 weeks
47.00603 .04522 (47*2π)/233650 weeks
48.01805 .02793 (48*2π)/233649 weeks
49.01673 .01802 (49*2π)/233648 weeks
50.01808 .01896 (50*2π)/233647 weeks
51.03058 .01792 (51*2π)/233646 weeks
52.0455 .00207 (52*2π)/233645 weeks
53.04617 -.02665 (53*2π)/233644 weeks
54.02481 -.05177 (54*2π)/233643 weeks
55-.00901 -.05666 (55*2π)/233642 weeks
56-.03642 -.03936 (56*2π)/233642 weeks
57-.04539 -.01273 (57*2π)/233641 weeks
58-.0389 .00811 (58*2π)/233640 weeks
59-.02826 .01863 (59*2π)/233640 weeks
60-.02021 .02461 (60*2π)/233639 weeks
61-.01182 .03195 (61*2π)/233638 weeks
62.00309 .03813 (62*2π)/233638 weeks
63.02359 .03458 (63*2π)/233637 weeks
64.03968 .01729 (64*2π)/233637 weeks
65.04127 -.00666 (65*2π)/233636 weeks
66.02839 -.02435 (66*2π)/233635 weeks
67.0116 -.0287 (67*2π)/233635 weeks
68.00146 -.02469 (68*2π)/233634 weeks
69-.00191 -.02275 (69*2π)/233634 weeks
70-.00766 -.0262 (70*2π)/233633 weeks
71-.02214 -.02712 (71*2π)/233633 weeks
72-.0401 -.01469 (72*2π)/233632 weeks
73-.04689 .01218 (73*2π)/233632 weeks
74-.03218 .03993 (74*2π)/233632 weeks
75-.00145 .0509 (75*2π)/233631 weeks
76.02732 .03866 (76*2π)/233631 weeks
77.03864 .01378 (77*2π)/233630 weeks
78.03241 -.00659 (78*2π)/233630 weeks
79.02088 -.01443 (79*2π)/233630 weeks
80.01474 -.01541 (80*2π)/233629 weeks
81.01275 -.01936 (81*2π)/233629 weeks
82.0062 -.02749 (82*2π)/233628 weeks
83-.00892 -.03157 (83*2π)/233628 weeks
84-.02612 -.02371 (84*2π)/233628 weeks
85-.03462 -.00572 (85*2π)/233627 weeks
86-.03011 .01242 (86*2π)/233627 weeks
87-.018 .02235 (87*2π)/233627 weeks
88-.00659 .02411 (88*2π)/233627 weeks
89.00125 .02335 (89*2π)/233626 weeks
90.00906 .02317 (90*2π)/233626 weeks
91.01998 .02023 (91*2π)/233626 weeks
92.03079 .00961 (92*2π)/233625 weeks
93.03419 -.00824 (93*2π)/233625 weeks
94.02548 -.02597 (94*2π)/233625 weeks
95.00792 -.03489 (95*2π)/233625 weeks
96-.01012 -.03215 (96*2π)/233624 weeks
97-.02194 -.02181 (97*2π)/233624 weeks
98-.02686 -.00989 (98*2π)/233624 weeks
99-.02775 .00123 (99*2π)/233624 weeks
100-.02568 .0126 (100*2π)/233623 weeks
101-.01844 .02418 (101*2π)/233623 weeks
102-.00433 .0318 (102*2π)/233623 weeks
103.01326 .03004 (103*2π)/233623 weeks
104.02674 .01793 (104*2π)/233622 weeks
105.03006 .00106 (105*2π)/233622 weeks
106.0237 -.01251 (106*2π)/233622 weeks
107.01362 -.01855 (107*2π)/233622 weeks
108.00559 -.01924 (108*2π)/233622 weeks
109.00014 -.01921 (109*2π)/233621 weeks
110-.00607 -.02001 (110*2π)/233621 weeks
111-.0155 -.01846 (111*2π)/233621 weeks
112-.02541 -.01004 (112*2π)/233621 weeks
113-.02922 .00524 (113*2π)/233621 weeks
114-.02214 .02123 (114*2π)/233620 weeks
115-.00612 .02949 (115*2π)/233620 weeks
116.01077 .02586 (116*2π)/233620 weeks
117.0203 .01392 (117*2π)/233620 weeks
118.02035 .00176 (118*2π)/233620 weeks
119.01567 -.00512 (119*2π)/233620 weeks
120.01204 -.00781 (120*2π)/233619 weeks
121.01034 -.01086 (121*2π)/233619 weeks
122.0068 -.01597 (122*2π)/233619 weeks
123-.00148 -.01961 (123*2π)/233619 weeks
124-.01199 -.01693 (124*2π)/233619 weeks
125-.01859 -.00784 (125*2π)/233619 weeks
126-.01799 .00234 (126*2π)/233619 weeks
127-.01283 .00846 (127*2π)/233618 weeks
128-.00804 .01031 (128*2π)/233618 weeks
129-.00547 .01153 (129*2π)/233618 weeks
130-.00237 .01467 (130*2π)/233618 weeks
131.00477 .01748 (131*2π)/233618 weeks
132.01498 .01488 (132*2π)/233618 weeks
133.02253 .00507 (133*2π)/233618 weeks
134.0224 -.00805 (134*2π)/233617 weeks
135.0146 -.01811 (135*2π)/233617 weeks
136.00374 -.02152 (136*2π)/233617 weeks
137-.00554 -.01954 (137*2π)/233617 weeks
138-.01225 -.01523 (138*2π)/233617 weeks
139-.0175 -.00943 (139*2π)/233617 weeks
140-.02092 -.00114 (140*2π)/233617 weeks
141-.02 .00931 (141*2π)/233617 weeks
142-.01291 .01855 (142*2π)/233616 weeks
143-.00152 .02219 (143*2π)/233616 weeks
144.00927 .01889 (144*2π)/233616 weeks
145.01567 .01148 (145*2π)/233616 weeks
146.01775 .00378 (146*2π)/233616 weeks
147.0177 -.00305 (147*2π)/233616 weeks
148.01614 -.01025 (148*2π)/233616 weeks
149.01104 -.01794 (149*2π)/233616 weeks
150.00092 -.02297 (150*2π)/233616 weeks
151-.01187 -.02112 (151*2π)/233615 weeks
152-.02158 -.01135 (152*2π)/233615 weeks
153-.02324 .00221 (153*2π)/233615 weeks
154-.0168 .01303 (154*2π)/233615 weeks
155-.00687 .01716 (155*2π)/233615 weeks
156.00127 .01545 (156*2π)/233615 weeks
157.00558 .01193 (157*2π)/233615 weeks
158.00805 .0095 (158*2π)/233615 weeks
159.0114 .0075 (159*2π)/233615 weeks
160.01579 .00303 (160*2π)/233615 weeks
161.01786 -.00553 (161*2π)/233615 weeks
162.01374 -.01551 (162*2π)/233614 weeks
163.0033 -.02146 (163*2π)/233614 weeks
164-.00887 -.01954 (164*2π)/233614 weeks
165-.0167 -.01095 (165*2π)/233614 weeks
166-.01756 -.00098 (166*2π)/233614 weeks
167-.01382 .00569 (167*2π)/233614 weeks
168-.0098 .00873 (168*2π)/233614 weeks
169-.00701 .01111 (169*2π)/233614 weeks
170-.00314 .01466 (170*2π)/233614 weeks
171.00457 .01706 (171*2π)/233614 weeks
172.01471 .01369 (172*2π)/233614 weeks
173.02143 .00306 (173*2π)/233614 weeks
174.01937 -.01028 (174*2π)/233613 weeks
175.00907 -.01878 (175*2π)/233613 weeks
176-.00314 -.01819 (176*2π)/233613 weeks
177-.01027 -.01104 (177*2π)/233613 weeks
178-.01077 -.00377 (178*2π)/233613 weeks
179-.00856 -.00024 (179*2π)/233613 weeks
180-.00767 .00111 (180*2π)/233613 weeks
181-.00776 .00361 (181*2π)/233613 weeks
182-.00583 .00739 (182*2π)/233613 weeks
183-.00099 .00935 (183*2π)/233613 weeks
184.0038 .00726 (184*2π)/233613 weeks
185.00495 .00322 (185*2π)/233613 weeks
186.00313 .00161 (186*2π)/233613 weeks
187.00286 .00334 (187*2π)/233612 weeks
188.00678 .00426 (188*2π)/233612 weeks
189.01179 -.00018 (189*2π)/233612 weeks
190.01173 -.00919 (190*2π)/233612 weeks
191.00393 -.0164 (191*2π)/233612 weeks
192-.00737 -.01581 (192*2π)/233612 weeks
193-.0148 -.00764 (193*2π)/233612 weeks
194-.0145 .00225 (194*2π)/233612 weeks
195-.00887 .00788 (195*2π)/233612 weeks
196-.00345 .0082 (196*2π)/233612 weeks
197-.00125 .00681 (197*2π)/233612 weeks
198-.00055 .00725 (198*2π)/233612 weeks
199.00215 .00905 (199*2π)/233612 weeks
200.00767 .00869 (200*2π)/233612 weeks
201.01285 .00367 (201*2π)/233612 weeks
202.01358 -.0045 (202*2π)/233612 weeks
203.00866 -.01136 (203*2π)/233612 weeks
204.00094 -.01334 (204*2π)/233611 weeks
205-.00531 -.01047 (205*2π)/233611 weeks
206-.00786 -.00588 (206*2π)/233611 weeks
207-.00787 -.00245 (207*2π)/233611 weeks
208-.00769 -.00049 (208*2π)/233611 weeks
209-.0083