Back to list of Stocks    See Also: Seasonal Analysis of BNKGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of BNK (C1 Financial)

BNK (C1 Financial) appears to have interesting cyclic behaviour every 2 weeks (27.9733*cosine), 4 weeks (27.969*sine), and 2 weeks (27.8466*cosine).

BNK (C1 Financial) has an average price of 34.28 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 8/13/2014 to 4/9/2018 for BNK (C1 Financial), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
034.28298   0
128.34713 -5.03625 (1*2π)/104104 weeks
226.92185 -4.10699 (2*2π)/10452 weeks
327.72842 -5.26516 (3*2π)/10435 weeks
426.61327 -7.50757 (4*2π)/10426 weeks
526.57569 -8.3647 (5*2π)/10421 weeks
626.55087 -10.42927 (6*2π)/10417 weeks
725.31475 -11.60931 (7*2π)/10415 weeks
824.41469 -13.19198 (8*2π)/10413 weeks
923.75567 -14.70844 (9*2π)/10412 weeks
1022.79966 -15.88874 (10*2π)/10410 weeks
1121.95563 -17.45215 (11*2π)/1049 weeks
1220.67999 -18.83562 (12*2π)/1049 weeks
1319.60254 -19.89515 (13*2π)/1048 weeks
1418.45501 -21.05366 (14*2π)/1047 weeks
1516.99525 -22.24724 (15*2π)/1047 weeks
1615.68713 -23.08669 (16*2π)/1047 weeks
1714.39499 -23.85034 (17*2π)/1046 weeks
1812.76552 -24.4928 (18*2π)/1046 weeks
1911.53345 -25.42006 (19*2π)/1045 weeks
209.80589 -26.2378 (20*2π)/1045 weeks
218.17743 -26.63014 (21*2π)/1045 weeks
226.63631 -27.19283 (22*2π)/1045 weeks
234.93629 -27.55052 (23*2π)/1045 weeks
243.31625 -27.76307 (24*2π)/1044 weeks
251.56976 -27.96897 (25*2π)/1044 weeks
26-.03673 -27.89923 (26*2π)/1044 weeks
27-1.58538 -27.9534 (27*2π)/1044 weeks
28-3.36373 -27.82159 (28*2π)/1044 weeks
29-5.04226 -27.50271 (29*2π)/1044 weeks
30-6.74679 -27.16603 (30*2π)/1043 weeks
31-8.33618 -26.71094 (31*2π)/1043 weeks
32-9.8919 -26.1533 (32*2π)/1043 weeks
33-11.46333 -25.52108 (33*2π)/1043 weeks
34-13.03734 -24.69853 (34*2π)/1043 weeks
35-14.44282 -23.90153 (35*2π)/1043 weeks
36-15.94304 -23.03145 (36*2π)/1043 weeks
37-17.25116 -21.94714 (37*2π)/1043 weeks
38-18.5917 -20.90111 (38*2π)/1043 weeks
39-19.90677 -19.73438 (39*2π)/1043 weeks
40-20.92418 -18.49325 (40*2π)/1043 weeks
41-22.07341 -17.21432 (41*2π)/1043 weeks
42-23.07808 -15.77339 (42*2π)/1042 weeks
43-23.99301 -14.44567 (43*2π)/1042 weeks
44-24.82325 -12.96358 (44*2π)/1042 weeks
45-25.50438 -11.38129 (45*2π)/1042 weeks
46-26.08646 -9.9013 (46*2π)/1042 weeks
47-26.76999 -8.24077 (47*2π)/1042 weeks
48-27.07748 -6.68242 (48*2π)/1042 weeks
49-27.47173 -5.07846 (49*2π)/1042 weeks
50-27.64211 -3.34452 (50*2π)/1042 weeks
51-27.84656 -1.71786 (51*2π)/1042 weeks
52-27.97327   (52*2π)/1042 weeks
53-27.84656 1.71786 (53*2π)/1042 weeks
54-27.64211 3.34452 (54*2π)/1042 weeks
55-27.47173 5.07846 (55*2π)/1042 weeks
56-27.07748 6.68242 (56*2π)/1042 weeks
57-26.76999 8.24077 (57*2π)/1042 weeks
58-26.08646 9.9013 (58*2π)/1042 weeks
59-25.50438 11.38129 (59*2π)/1042 weeks
60-24.82325 12.96358 (60*2π)/1042 weeks
61-23.99301 14.44567 (61*2π)/1042 weeks
62-23.07808 15.77339 (62*2π)/1042 weeks
63-22.07341 17.21432 (63*2π)/1042 weeks
64-20.92418 18.49325 (64*2π)/1042 weeks
65-19.90677 19.73438 (65*2π)/1042 weeks
66-18.5917 20.90111 (66*2π)/1042 weeks
67-17.25116 21.94714 (67*2π)/1042 weeks
68-15.94304 23.03145 (68*2π)/1042 weeks
69-14.44282 23.90153 (69*2π)/1042 weeks
70-13.03734 24.69853 (70*2π)/1041 weeks
71-11.46333 25.52108 (71*2π)/1041 weeks
72-9.8919 26.1533 (72*2π)/1041 weeks
73-8.33618 26.71094 (73*2π)/1041 weeks
74-6.74679 27.16603 (74*2π)/1041 weeks
75-5.04226 27.50271 (75*2π)/1041 weeks
76-3.36373 27.82159 (76*2π)/1041 weeks
77-1.58538 27.9534 (77*2π)/1041 weeks
78-.03673 27.89923 (78*2π)/1041 weeks
791.56976 27.96897 (79*2π)/1041 weeks
803.31625 27.76307 (80*2π)/1041 weeks
814.93629 27.55052 (81*2π)/1041 weeks
826.63631 27.19283 (82*2π)/1041 weeks
838.17743 26.63014 (83*2π)/1041 weeks
849.80589 26.2378 (84*2π)/1041 weeks
8511.53345 25.42006 (85*2π)/1041 weeks
8612.76552 24.4928 (86*2π)/1041 weeks
8714.39499 23.85034 (87*2π)/1041 weeks
8815.68713 23.08669 (88*2π)/1041 weeks
8916.99525 22.24724 (89*2π)/1041 weeks
9018.45501 21.05366 (90*2π)/1041 weeks
9119.60254 19.89515 (91*2π)/1041 weeks
9220.67999 18.83562 (92*2π)/1041 weeks
9321.95563 17.45215 (93*2π)/1041 weeks
9422.79966 15.88874 (94*2π)/1041 weeks
9523.75567 14.70844 (95*2π)/1041 weeks
9624.41469 13.19198 (96*2π)/1041 weeks
9725.31475 11.60931 (97*2π)/1041 weeks
9826.55087 10.42927 (98*2π)/1041 weeks
9926.57569 8.3647 (99*2π)/1041 weeks
10026.61327 7.50757 (100*2π)/1041 weeks
10127.72842 5.26516 (101*2π)/1041 weeks
10226.92185 4.10699 (102*2π)/1041 weeks