Back to list of Stocks    See Also: Seasonal Analysis of BITAGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

# Fourier Analysis of BITA (Bitauto Holdings Limited)

BITA (Bitauto Holdings Limited) appears to have interesting cyclic behaviour every 32 weeks (1.764*sine), 24 weeks (1.7072*sine), and 20 weeks (1.7019*cosine).

BITA (Bitauto Holdings Limited) has an average price of 26.28 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 11/18/2010 to 4/23/2018 for BITA (Bitauto Holdings Limited), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
026.2849   0
1-15.12567 -13.9779 (1*2π)/389389 weeks
214.66513 .4198 (2*2π)/389195 weeks
3-5.70195 -8.16614 (3*2π)/389130 weeks
42.33261 1.35213 (4*2π)/38997 weeks
5-1.69056 -5.12915 (5*2π)/38978 weeks
6-2.13429 .481 (6*2π)/38965 weeks
7-1.64349 -1.32031 (7*2π)/38956 weeks
8-.30178 2.06881 (8*2π)/38949 weeks
9-1.27549 -1.7799 (9*2π)/38943 weeks
10.85901 1.59895 (10*2π)/38939 weeks
11-1.30014 -1.65451 (11*2π)/38935 weeks
12.19683 1.76404 (12*2π)/38932 weeks
13.52863 -1.04902 (13*2π)/38930 weeks
14-.34565 -.03188 (14*2π)/38928 weeks
15.85555 -.68043 (15*2π)/38926 weeks
16-.30157 -1.70724 (16*2π)/38924 weeks
17-1.23199 -.03513 (17*2π)/38923 weeks
18.91125 -.33464 (18*2π)/38922 weeks
19-1.7019 -.89747 (19*2π)/38920 weeks
20.02992 .87359 (20*2π)/38919 weeks
21-.35665 -.20482 (21*2π)/38919 weeks
22-.0146 .36367 (22*2π)/38918 weeks
23-.1549 .37524 (23*2π)/38917 weeks
24.38447 .45147 (24*2π)/38916 weeks
25.21543 .07058 (25*2π)/38916 weeks
26.49088 .25079 (26*2π)/38915 weeks
27-.30043 -.44921 (27*2π)/38914 weeks
28.68873 .96542 (28*2π)/38914 weeks
29.31131 -1.00268 (29*2π)/38913 weeks
30.37064 -.05851 (30*2π)/38913 weeks
31-.38097 -.74174 (31*2π)/38913 weeks
32.4468 .49946 (32*2π)/38912 weeks
33-.1167 -1.35979 (33*2π)/38912 weeks
34-.31408 .48421 (34*2π)/38911 weeks
35.02233 -.68156 (35*2π)/38911 weeks
36-.44417 .24633 (36*2π)/38911 weeks
37-.1821 -.10404 (37*2π)/38911 weeks
38.15955 .45609 (38*2π)/38910 weeks
39-.17746 -.1785 (39*2π)/38910 weeks
40.07333 .52389 (40*2π)/38910 weeks
41.34056 -.28685 (41*2π)/3899 weeks
42-.21866 .29265 (42*2π)/3899 weeks
43.27089 -.17543 (43*2π)/3899 weeks
44-.32456 .53011 (44*2π)/3899 weeks
45.90108 -.25051 (45*2π)/3899 weeks
46-.50337 .16174 (46*2π)/3898 weeks
47.86659 -.14264 (47*2π)/3898 weeks
48-.31139 -.22527 (48*2π)/3898 weeks
49.33876 -.10863 (49*2π)/3898 weeks
50-.28495 -.08498 (50*2π)/3898 weeks
51.16847 .37673 (51*2π)/3898 weeks
52.42406 -.47849 (52*2π)/3897 weeks
53-.33533 .13586 (53*2π)/3897 weeks
54.34949 -.50338 (54*2π)/3897 weeks
55-.36466 .07815 (55*2π)/3897 weeks
56.22014 -.05027 (56*2π)/3897 weeks
57-.21907 -.31332 (57*2π)/3897 weeks
58-.22427 .37619 (58*2π)/3897 weeks
59.11938 -.34819 (59*2π)/3897 weeks
60-.16507 .32363 (60*2π)/3896 weeks
61.19658 -.38414 (61*2π)/3896 weeks
62-.15616 .09206 (62*2π)/3896 weeks
63.02577 -.24096 (63*2π)/3896 weeks
64-.10206 -.13509 (64*2π)/3896 weeks
65-.03698 -.0566 (65*2π)/3896 weeks
66-.29966 -.15336 (66*2π)/3896 weeks
67.11302 .07417 (67*2π)/3896 weeks
68-.32209 -.26078 (68*2π)/3896 weeks
69-.15825 .25796 (69*2π)/3896 weeks
70.06107 -.08807 (70*2π)/3896 weeks
71-.2128 -.01106 (71*2π)/3895 weeks
72.17269 .22693 (72*2π)/3895 weeks
73-.09143 -.0248 (73*2π)/3895 weeks
74.13515 .13049 (74*2π)/3895 weeks
75-.14051 -.00628 (75*2π)/3895 weeks
76.07287 .15045 (76*2π)/3895 weeks
77-.07767 -.08098 (77*2π)/3895 weeks
78.01137 .25576 (78*2π)/3895 weeks
79.11056 -.1066 (79*2π)/3895 weeks
80.13683 .19133 (80*2π)/3895 weeks
81-.03587 -.24443 (81*2π)/3895 weeks
82.04272 .1854 (82*2π)/3895 weeks
83.12708 -.0938 (83*2π)/3895 weeks
84-.12013 .0087 (84*2π)/3895 weeks
85.22483 -.03849 (85*2π)/3895 weeks
86-.23278 -.08131 (86*2π)/3895 weeks
87.11933 -.1555 (87*2π)/3894 weeks
88-.28712 .11122 (88*2π)/3894 weeks
89.06283 -.10443 (89*2π)/3894 weeks
90-.28079 .06992 (90*2π)/3894 weeks
91.02215 .06759 (91*2π)/3894 weeks
92-.07914 .03514 (92*2π)/3894 weeks
93.05378 .07712 (93*2π)/3894 weeks
94.06747 -.0301 (94*2π)/3894 weeks
95.05443 -.07482 (95*2π)/3894 weeks
96-.07332 -.13568 (96*2π)/3894 weeks
97-.07539 -.00339 (97*2π)/3894 weeks
98-.07804 -.07842 (98*2π)/3894 weeks
99-.0997 -.13453 (99*2π)/3894 weeks
100-.21339 .13289 (100*2π)/3894 weeks
101-.01562 .05319 (101*2π)/3894 weeks
102.01203 -.00736 (102*2π)/3894 weeks
103-.17689 .27246 (103*2π)/3894 weeks
104.22414 -.20751 (104*2π)/3894 weeks
105-.27244 .31127 (105*2π)/3894 weeks
106.24261 -.14178 (106*2π)/3894 weeks
107-.24029 .20374 (107*2π)/3894 weeks
108.24846 .05316 (108*2π)/3894 weeks
109-.11405 -.10252 (109*2π)/3894 weeks
110.1685 .0624 (110*2π)/3894 weeks
111-.09563 -.23211 (111*2π)/3894 weeks
112-.00948 .12849 (112*2π)/3893 weeks
113-.09258 -.21445 (113*2π)/3893 weeks
114-.05478 .1475 (114*2π)/3893 weeks
115.0297 -.04118 (115*2π)/3893 weeks
116.03074 -.02836 (116*2π)/3893 weeks
117-.05332 -.17248 (117*2π)/3893 weeks
118-.12274 .01312 (118*2π)/3893 weeks
119-.02024 -.07161 (119*2π)/3893 weeks
120-.09875 -.08151 (120*2π)/3893 weeks
121-.03821 -.05287 (121*2π)/3893 weeks
122-.01991 -.07885 (122*2π)/3893 weeks
123-.08966 -.04686 (123*2π)/3893 weeks
124-.00647 -.08016 (124*2π)/3893 weeks
125-.1497 -.1224 (125*2π)/3893 weeks
126-.05981 .11031 (126*2π)/3893 weeks
127-.20093 -.17949 (127*2π)/3893 weeks
128-.08968 .21297 (128*2π)/3893 weeks
129-.13499 -.047 (129*2π)/3893 weeks
130.05534 .23826 (130*2π)/3893 weeks
131-.0435 -.11282 (131*2π)/3893 weeks
132.10493 .1723 (132*2π)/3893 weeks
133-.11497 -.1357 (133*2π)/3893 weeks
134-.07708 .21952 (134*2π)/3893 weeks
135.08884 -.01442 (135*2π)/3893 weeks
136-.1517 .12716 (136*2π)/3893 weeks
137.12277 .02565 (137*2π)/3893 weeks
138-.19328 .12946 (138*2π)/3893 weeks
139.23012 .15926 (139*2π)/3893 weeks
140-.03634 -.18575 (140*2π)/3893 weeks
141-.03114 .24079 (141*2π)/3893 weeks
142.10814 -.26179 (142*2π)/3893 weeks
143-.16014 .19412 (143*2π)/3893 weeks
144.24994 -.17317 (144*2π)/3893 weeks
145-.3088 -.04966 (145*2π)/3893 weeks
146.24689 .09229 (146*2π)/3893 weeks
147-.28404 -.18715 (147*2π)/3893 weeks
148.21605 .17828 (148*2π)/3893 weeks
149-.18373 -.28507 (149*2π)/3893 weeks
150-.00663 .27176 (150*2π)/3893 weeks
151.01085 -.30618 (151*2π)/3893 weeks
152-.21733 .3105 (152*2π)/3893 weeks
153.20571 -.11202 (153*2π)/3893 weeks
154-.04534 .00635 (154*2π)/3893 weeks
155.04212 -.06735 (155*2π)/3893 weeks
156-.09486 -.05701 (156*2π)/3892 weeks
157.05414 .08338 (157*2π)/3892 weeks
158-.03925 -.10959 (158*2π)/3892 weeks
159.00725 -.03539 (159*2π)/3892 weeks
160-.1115 -.02568 (160*2π)/3892 weeks
161-.07424 -.01806 (161*2π)/3892 weeks
162.07222 .07757 (162*2π)/3892 weeks
163-.08388 -.18685 (163*2π)/3892 weeks
164.0049 .18518 (164*2π)/3892 weeks
165.07025 -.08412 (165*2π)/3892 weeks
166-.07323 .01795 (166*2π)/3892 weeks
167.05401 -.02928 (167*2π)/3892 weeks
168-.10362 -.11109 (168*2π)/3892 weeks
169-.16034 .10344 (169*2π)/3892 weeks
170.08798 -.0878 (170*2π)/3892 weeks
171-.10754 -.00494 (171*2π)/3892 weeks
172-.01952 -.07262 (172*2π)/3892 weeks
173-.07061 -.05455 (173*2π)/3892 weeks
174-.12948 .0646 (174*2π)/3892 weeks
175.03086 .06222 (175*2π)/3892 weeks
176.00667 .03437 (176*2π)/3892 weeks
177-.03668 -.13438 (177*2π)/3892 weeks
178-.1617 .11398 (178*2π)/3892 weeks
179.00614 .04918 (179*2π)/3892 weeks
180-.04347 .06755 (180*2π)/3892 weeks
181.00656 .0066 (181*2π)/3892 weeks
182.10472 .18951 (182*2π)/3892 weeks
183-.02114 -.12214 (183*2π)/3892 weeks
184.07074 .1954 (184*2π)/3892 weeks
185-.01459 -.11532 (185*2π)/3892 weeks
186-.02491 .12332 (186*2π)/3892 weeks
187.12728 -.11872 (187*2π)/3892 weeks
188-.22032 .07976 (188*2π)/3892 weeks
189.22859 -.02199 (189*2π)/3892 weeks
190-.24829 -.04656 (190*2π)/3892 weeks
191.12191 .15199 (191*2π)/3892 weeks
192-.04199 -.22717 (192*2π)/3892 weeks
193-.04966 .26624 (193*2π)/3892 weeks
194-.01726 -.32642 (194*2π)/3892 weeks
195-.01726 .32642 (195*2π)/3892 weeks
196-.04966 -.26624 (196*2π)/3892 weeks
197-.04199 .22717 (197*2π)/3892 weeks
198.12191 -.15199 (198*2π)/3892 weeks
199-.24829 .04656 (199*2π)/3892 weeks
200.22859 .02199 (200*2π)/3892 weeks
201-.22032 -.07976 (201*2π)/3892 weeks
202.12728 .11872 (202*2π)/3892 weeks
203-.02491 -.12332 (203*2π)/3892 weeks
204-.01459 .11532 (204*2π)/3892 weeks
205.07074 -.1954 (205*2π)/3892 weeks
206-.02114 .12214 (206*2π)/3892 weeks
207.10472 -.18951 (207*2π)/3892 weeks
208.00656 -.0066 (208*2π)/3892 weeks
209-.04347 -.06755 (209*2π)/3892 weeks
210.00614 -.04918 (210*2π)/3892 weeks
211-.1617 -.11398 (211*2π)/3892 weeks
212-.03668 .13438 (212*2π)/3892 weeks
213.00667 -.03437 (213*2π)/3892 weeks
214.03086 -.06222 (214*2π)/3892 weeks
215-.12948 -.0646 (215*2π)/3892 weeks
216-.07061 .05455 (216*2π)/3892 weeks
217-.01952 .07262 (217*2π)/3892 weeks
218-.10754 .00494 (218*2π)/3892 weeks
219.08798 .0878 (219*2π)/3892 weeks
220-.16034 -.10344 (220*2π)/3892 weeks
221-.10362 .11109 (221*2π)/3892 weeks
222.05401 .02928 (222*2π)/3892 weeks
223-.07323 -.01795 (223*2π)/3892 weeks
224.07025 .08412 (224*2π)/3892 weeks
225.0049 -.18518 (225*2π)/3892 weeks
226-.08388 .18685 (226*2π)/3892 weeks
227.07222 -.07757 (227*2π)/3892 weeks
228-.07424 .01806 (228*2π)/3892 weeks
229-.1115 .02568 (229*2π)/3892 weeks
230.00725 .03539 (230*2π)/3892 weeks
231-.03925 .10959 (231*2π)/3892 weeks
232.05414 -.08338 (232*2π)/3892 weeks
233-.09486 .05701 (233*2π)/3892 weeks
234.04212 .06735 (234*2π)/3892 weeks
235-.04534 -.00635 (235*2π)/3892 weeks
236.20571 .11202 (236*2π)/3892 weeks
237-.21733 -.3105 (237*2π)/3892 weeks
238.01085 .30618 (238*2π)/3892 weeks
239-.00663 -.27176 (239*2π)/3892 weeks
240-.18373 .28507 (240*2π)/3892 weeks
241.21605 -.17828 (241*2π)/3892 weeks
242-.28404 .18715 (242*2π)/3892 weeks
243.24689 -.09229 (243*2π)/3892 weeks
244-.3088 .04966 (244*2π)/3892 weeks
245.24994 .17317 (245*2π)/3892 weeks
246-.16014 -.19412 (246*2π)/3892 weeks
247.10814 .26179 (247*2π)/3892 weeks
248-.03114 -.24079 (248*2π)/3892 weeks
249-.03634 .18575 (249*2π)/3892 weeks
250.23012 -.15926 (250*2π)/3892 weeks
251-.19328 -.12946 (251*2π)/3892 weeks
252.12277 -.02565 (252*2π)/3892 weeks
253-.1517 -.12716 (253*2π)/3892 weeks
254.08884 .01442 (254*2π)/3892 weeks
255-.07708 -.21952 (255*2π)/3892 weeks
256-.11497 .1357 (256*2π)/3892 weeks
257.10493 -.1723 (257*2π)/3892 weeks
258-.0435 .11282 (258*2π)/3892 weeks
259.05534 -.23826 (259*2π)/3892 weeks
260-.13499 .047 (260*2π)/3891 weeks
261-.08968 -.21297 (261*2π)/3891 weeks
262-.20093 .17949 (262*2π)/3891 weeks
263-.05981 -.11031 (263*2π)/3891 weeks
264-.1497 .1224 (264*2π)/3891 weeks
265-.00647 .08016 (265*2π)/3891 weeks
266-.08966 .04686 (266*2π)/3891 weeks
267-.01991 .07885 (267*2π)/3891 weeks
268-.03821 .05287 (268*2π)/3891 weeks
269-.09875 .08151 (269*2π)/3891 weeks
270-.02024 .07161 (270*2π)/3891 weeks
271-.12274 -.01312 (271*2π)/3891 weeks
272-.05332 .17248 (272*2π)/3891 weeks
273.03074 .02836 (273*2π)/3891 weeks
274.0297 .04118 (274*2π)/3891 weeks
275-.05478 -.1475 (275*2π)/3891 weeks
276-.09258 .21445 (276*2π)/3891 weeks
277-.00948 -.12849 (277*2π)/3891 weeks
278-.09563 .23211 (278*2π)/3891 weeks
279.1685 -.0624 (279*2π)/3891 weeks
280-.11405 .10252 (280*2π)/3891 weeks
281.24846 -.05316 (281*2π)/3891 weeks
282-.24029 -.20374 (282*2π)/3891 weeks
283.24261 .14178 (283*2π)/3891 weeks
284-.27244 -.31127 (284*2π)/3891 weeks
285.22414 .20751 (285*2π)/3891 weeks
286-.17689 -.27246 (286*2π)/3891 weeks
287.01203 .00736 (287*2π)/3891 weeks
288-.01562 -.05319 (288*2π)/3891 weeks
289-.21339 -.13289 (289*2π)/3891 weeks
290-.0997 .13453 (290*2π)/3891 weeks
291-.07804 .07842 (291*2π)/3891 weeks
292-.07539 .00339 (292*2π)/3891 weeks
293-.07332 .13568 (293*2π)/3891 weeks
294.05443 .07482 (294*2π)/3891 weeks
295.06747 .0301 (295*2π)/3891 weeks
296.05378 -.07712 (296*2π)/3891 weeks
297-.07914 -.03514 (297*2π)/3891 weeks
298.02215 -.06759 (298*2π)/3891 weeks
299-.28079 -.06992 (299*2π)/3891 weeks
300.06283 .10443 (300*2π)/3891 weeks
301-.28712 -.11122 (301*2π)/3891 weeks
302.11933 .1555 (302*2π)/3891 weeks
303-.23278 .08131 (303*2π)/3891 weeks
304.22483 .03849 (304*2π)/3891 weeks
305-.12013 -.0087 (305*2π)/3891 weeks
306.12708 .0938 (306*2π)/3891 weeks
307.04272 -.1854 (307*2π)/3891 weeks
308-.03587 .24443 (308*2π)/3891 weeks
309.13683 -.19133 (309*2π)/3891 weeks
310.11056 .1066 (310*2π)/3891 weeks
311.01137 -.25576 (311*2π)/3891 weeks
312-.07767 .08098 (312*2π)/3891 weeks
313.07287 -.15045 (313*2π)/3891 weeks
314-.14051 .00628 (314*2π)/3891 weeks
315.13515 -.13049 (315*2π)/3891 weeks
316-.09143 .0248 (316*2π)/3891 weeks
317.17269 -.22693 (317*2π)/3891 weeks
318-.2128 .01106 (318*2π)/3891 weeks
319.06107 .08807 (319*2π)/3891 weeks
320-.15825 -.25796 (320*2π)/3891 weeks
321-.32209 .26078 (321*2π)/3891 weeks
322.11302 -.07417 (322*2π)/3891 weeks
323-.29966 .15336 (323*2π)/3891 weeks
324-.03698 .0566 (324*2π)/3891 weeks
325-.10206 .13509 (325*2π)/3891 weeks
326.02577 .24096 (326*2π)/3891 weeks
327-.15616 -.09206 (327*2π)/3891 weeks
328.19658 .38414 (328*2π)/3891 weeks
329-.16507 -.32363 (329*2π)/3891 weeks
330.11938 .34819 (330*2π)/3891 weeks
331-.22427 -.37619 (331*2π)/3891 weeks
332-.21907 .31332 (332*2π)/3891 weeks
333.22014 .05027 (333*2π)/3891 weeks
334-.36466 -.07815 (334*2π)/3891 weeks
335.34949 .50338 (335*2π)/3891 weeks
336-.33533 -.13586 (336*2π)/3891 weeks
337.42406 .47849 (337*2π)/3891 weeks
338.16847 -.37673 (338*2π)/3891 weeks
339-.28495 .08498 (339*2π)/3891 weeks
340.33876 .10863 (340*2π)/3891 weeks
341-.31139 .22527 (341*2π)/3891 weeks
342.86659 .14264 (342*2π)/3891 weeks
343-.50337 -.16174 (343*2π)/3891 weeks
344.90108 .25051 (344*2π)/3891 weeks
345-.32456 -.53011 (345*2π)/3891 weeks
346.27089 .17543 (346*2π)/3891 weeks
347-.21866 -.29265 (347*2π)/3891 weeks
348.34056 .28685 (348*2π)/3891 weeks
349.07333 -.52389 (349*2π)/3891 weeks
350-.17746 .1785 (350*2π)/3891 weeks
351.15955 -.45609 (351*2π)/3891 weeks
352-.1821 .10404 (352*2π)/3891 weeks
353-.44417 -.24633 (353*2π)/3891 weeks
354.02233 .68156 (354*2π)/3891 weeks
355-.31408 -.48421 (355*2π)/3891 weeks
356-.1167 1.35979 (356*2π)/3891 weeks
357.4468 -.49946 (357*2π)/3891 weeks
358-.38097 .74174 (358*2π)/3891 weeks
359.37064 .05851 (359*2π)/3891 weeks
360.31131 1.00268 (360*2π)/3891 weeks
361.68873 -.96542 (361*2π)/3891 weeks
362-.30043 .44921 (362*2π)/3891 weeks
363.49088 -.25079 (363*2π)/3891 weeks
364.21543 -.07058 (364*2π)/3891 weeks
365.38447 -.45147 (365*2π)/3891 weeks
366-.1549 -.37524 (366*2π)/3891 weeks
367-.0146 -.36367 (367*2π)/3891 weeks
368-.35665 .20482 (368*2π)/3891 weeks
369.02992 -.87359 (369*2π)/3891 weeks
370-1.7019 .89747 (370*2π)/3891 weeks
371.91125 .33464 (371*2π)/3891 weeks
372-1.23199 .03513 (372*2π)/3891 weeks
373-.30157 1.70724 (373*2π)/3891 weeks
374.85555 .68043 (374*2π)/3891 weeks
375-.34565 .03188 (375*2π)/3891 weeks
376.52863 1.04902 (376*2π)/3891 weeks
377.19683 -1.76404 (377*2π)/3891 weeks
378-1.30014 1.65451 (378*2π)/3891 weeks
379.85901 -1.59895 (379*2π)/3891 weeks
380-1.27549 1.7799 (380*2π)/3891 weeks
381-.30178 -2.06881 (381*2π)/3891 weeks
382-1.64349 1.32031 (382*2π)/3891 weeks
383-2.13429 -.481 (383*2π)/3891 weeks
384-1.69056 5.12915 (384*2π)/3891 weeks
3852.33261 -1.35213 (385*2π)/3891 weeks
386-5.70195 8.16614 (386*2π)/3891 weeks
38714.66513 -.4198 (387*2π)/3891 weeks