Back to list of Stocks    See Also: Seasonal Analysis of BISGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of BIS (PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY)


BIS (PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY) appears to have interesting cyclic behaviour every 36 weeks (54.2118*sine), 33 weeks (51.5281*sine), and 40 weeks (44.4582*sine).

BIS (PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY) has an average price of 337.18 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/9/2010 to 11/6/2017 for BIS (PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY PROSHARES ULTRASHORT NASDAQ BIOTECHNOLOGY), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0337.1766   0 
1279.2823 353.8276 (1*2π)/397397 weeks
258.89905 230.3941 (2*2π)/397199 weeks
327.15341 151.7038 (3*2π)/397132 weeks
423.44355 115.2008 (4*2π)/39799 weeks
533.11194 98.82233 (5*2π)/39779 weeks
611.25659 109.1076 (6*2π)/39766 weeks
7-16.02772 85.61443 (7*2π)/39757 weeks
8-14.06668 56.12762 (8*2π)/39750 weeks
9-.87786 45.28997 (9*2π)/39744 weeks
105.88833 44.45821 (10*2π)/39740 weeks
114.9604 54.21184 (11*2π)/39736 weeks
12-14.98847 51.52814 (12*2π)/39733 weeks
13-16.48718 31.81438 (13*2π)/39731 weeks
14-7.29685 23.19008 (14*2π)/39728 weeks
15-2.32693 23.77818 (15*2π)/39726 weeks
16-2.82957 20.94072 (16*2π)/39725 weeks
173.19647 21.74389 (17*2π)/39723 weeks
181.59186 23.21913 (18*2π)/39722 weeks
19-2.38122 24.93003 (19*2π)/39721 weeks
20-7.19078 18.14771 (20*2π)/39720 weeks
21-1.54318 14.50264 (21*2π)/39719 weeks
221.34609 10.99862 (22*2π)/39718 weeks
235.81959 13.94568 (23*2π)/39717 weeks
243.12242 18.58212 (24*2π)/39717 weeks
25-.29488 16.27846 (25*2π)/39716 weeks
263.69477 12.92158 (26*2π)/39715 weeks
273.61207 16.88548 (27*2π)/39715 weeks
282.30196 16.02324 (28*2π)/39714 weeks
29-1.05546 19.27058 (29*2π)/39714 weeks
30-6.67625 13.55657 (30*2π)/39713 weeks
31-4.44236 5.60754 (31*2π)/39713 weeks
323.19709 5.14343 (32*2π)/39712 weeks
334.92921 9.06902 (33*2π)/39712 weeks
344.09072 11.46293 (34*2π)/39712 weeks
352.35614 11.10896 (35*2π)/39711 weeks
36.94081 11.36397 (36*2π)/39711 weeks
37-.87317 7.08973 (37*2π)/39711 weeks
385.55029 4.96494 (38*2π)/39710 weeks
397.08004 11.51501 (39*2π)/39710 weeks
403.06635 13.38541 (40*2π)/39710 weeks
41-.71814 13.53218 (41*2π)/39710 weeks
42-2.762 9.71234 (42*2π)/3979 weeks
43-2.2153 7.01754 (43*2π)/3979 weeks
44.69487 4.08084 (44*2π)/3979 weeks
454.10136 6.68323 (45*2π)/3979 weeks
46.76771 10.08095 (46*2π)/3979 weeks
47-.75175 7.08124 (47*2π)/3978 weeks
48-1.63084 7.58888 (48*2π)/3978 weeks
49-2.1001 3.17403 (49*2π)/3978 weeks
502.12815 2.4419 (50*2π)/3978 weeks
513.39015 3.27284 (51*2π)/3978 weeks
522.43641 4.98663 (52*2π)/3978 weeks
53.63568 5.57723 (53*2π)/3977 weeks
54-1.42062 3.7089 (54*2π)/3977 weeks
55.65215 -2.11257 (55*2π)/3977 weeks
567.51068 -2.01649 (56*2π)/3977 weeks
579.31711 3.95731 (57*2π)/3977 weeks
586.00166 6.56868 (58*2π)/3977 weeks
594.01109 5.61839 (59*2π)/3977 weeks
602.94939 3.1967 (60*2π)/3977 weeks
616.89219 1.20812 (61*2π)/3977 weeks
628.27087 5.54729 (62*2π)/3976 weeks
636.30645 7.40463 (63*2π)/3976 weeks
645.46656 7.89958 (64*2π)/3976 weeks
653.44825 6.88254 (65*2π)/3976 weeks
663.66378 5.50084 (66*2π)/3976 weeks
674.30148 5.97265 (67*2π)/3976 weeks
683.27217 7.70771 (68*2π)/3976 weeks
691.26435 6.53896 (69*2π)/3976 weeks
701.42494 3.9038 (70*2π)/3976 weeks
713.67597 3.9408 (71*2π)/3976 weeks
723.17934 5.51701 (72*2π)/3976 weeks
731.26381 4.90424 (73*2π)/3975 weeks
742.49596 3.5539 (74*2π)/3975 weeks
752.54606 3.17549 (75*2π)/3975 weeks
764.01603 3.12297 (76*2π)/3975 weeks
773.23205 4.49468 (77*2π)/3975 weeks
782.44496 3.93265 (78*2π)/3975 weeks
793.18495 2.31014 (79*2π)/3975 weeks
804.77356 2.68441 (80*2π)/3975 weeks
815.52175 4.29796 (81*2π)/3975 weeks
824.53446 5.44498 (82*2π)/3975 weeks
832.9113 5.35363 (83*2π)/3975 weeks
842.76747 4.25683 (84*2π)/3975 weeks
853.32211 4.68751 (85*2π)/3975 weeks
862.66938 5.072 (86*2π)/3975 weeks
872.26587 4.18678 (87*2π)/3975 weeks
881.12894 4.02435 (88*2π)/3975 weeks
891.62719 1.82692 (89*2π)/3974 weeks
903.53514 2.36138 (90*2π)/3974 weeks
913.38206 3.29468 (91*2π)/3974 weeks
921.94494 3.01388 (92*2π)/3974 weeks
932.58295 1.99276 (93*2π)/3974 weeks
943.31885 1.28227 (94*2π)/3974 weeks
954.61297 2.38795 (95*2π)/3974 weeks
963.62534 2.61854 (96*2π)/3974 weeks
973.97518 1.61057 (97*2π)/3974 weeks
984.74941 3.19809 (98*2π)/3974 weeks
993.92227 3.06533 (99*2π)/3974 weeks
1003.30975 3.28209 (100*2π)/3974 weeks
1013.42814 1.8289 (101*2π)/3974 weeks
1025.40119 1.8656 (102*2π)/3974 weeks
1036.53497 2.94411 (103*2π)/3974 weeks
1046.3353 5.13954 (104*2π)/3974 weeks
1053.94003 6.29038 (105*2π)/3974 weeks
1062.62975 5.79048 (106*2π)/3974 weeks
1071.40155 4.62175 (107*2π)/3974 weeks
1082.00425 3.11505 (108*2π)/3974 weeks
1092.97266 3.93908 (109*2π)/3974 weeks
1101.74993 4.5615 (110*2π)/3974 weeks
111.69862 3.10519 (111*2π)/3974 weeks
112.74266 1.68964 (112*2π)/3974 weeks
1132.40452 .60525 (113*2π)/3974 weeks
1144.45328 2.0363 (114*2π)/3973 weeks
1152.9653 4.21297 (115*2π)/3973 weeks
1161.10686 2.96127 (116*2π)/3973 weeks
1171.28571 1.78154 (117*2π)/3973 weeks
1181.69005 1.39653 (118*2π)/3973 weeks
1192.29513 .3106 (119*2π)/3973 weeks
1203.6587 .48981 (120*2π)/3973 weeks
1213.87709 1.7226 (121*2π)/3973 weeks
1222.97884 1.56533 (122*2π)/3973 weeks
1233.57527 1.32259 (123*2π)/3973 weeks
1243.57895 1.59312 (124*2π)/3973 weeks
1253.5777 .91788 (125*2π)/3973 weeks
1264.53198 .67354 (126*2π)/3973 weeks
1275.48354 1.9786 (127*2π)/3973 weeks
1285.16111 3.32574 (128*2π)/3973 weeks
1293.62313 3.77364 (129*2π)/3973 weeks
1302.72137 2.88451 (130*2π)/3973 weeks
1313.14625 2.09467 (131*2π)/3973 weeks
1323.96015 2.49386 (132*2π)/3973 weeks
1333.15628 2.64557 (133*2π)/3973 weeks
1343.55684 2.50131 (134*2π)/3973 weeks
1353.13554 2.99195 (135*2π)/3973 weeks
1363.12743 2.31836 (136*2π)/3973 weeks
1373.58754 2.95236 (137*2π)/3973 weeks
1383.31656 3.00242 (138*2π)/3973 weeks
1393.68179 3.15221 (139*2π)/3973 weeks
1403.36756 4.51247 (140*2π)/3973 weeks
141.8904 5.00033 (141*2π)/3973 weeks
142-.18671 2.17286 (142*2π)/3973 weeks
1431.54894 1.16056 (143*2π)/3973 weeks
1442.75813 1.73793 (144*2π)/3973 weeks
1452.93917 3.84483 (145*2π)/3973 weeks
146.1008 4.04319 (146*2π)/3973 weeks
147-.65843 1.51306 (147*2π)/3973 weeks
148.80825 .65815 (148*2π)/3973 weeks
149.8532 .58602 (149*2π)/3973 weeks
1501.62036 .93546 (150*2π)/3973 weeks
151.77281 1.83029 (151*2π)/3973 weeks
152-.55623 .96177 (152*2π)/3973 weeks
153-.14892 -1.46943 (153*2π)/3973 weeks
1541.95053 -2.43591 (154*2π)/3973 weeks
1553.84003 -.7364 (155*2π)/3973 weeks
1563.21117 .43354 (156*2π)/3973 weeks
1572.56808 .6214 (157*2π)/3973 weeks
1582.1624 .58113 (158*2π)/3973 weeks
1592.07802 .38339 (159*2π)/3972 weeks
1601.93538 -.12619 (160*2π)/3972 weeks
1612.2503 -.68186 (161*2π)/3972 weeks
1623.24811 -.40983 (162*2π)/3972 weeks
1632.90583 .67714 (163*2π)/3972 weeks
1641.67074 .47284 (164*2π)/3972 weeks
1651.61653 -.71448 (165*2π)/3972 weeks
1662.30754 -.82294 (166*2π)/3972 weeks
1672.53283 -.71322 (167*2π)/3972 weeks
1682.39169 -1.16245 (168*2π)/3972 weeks
1693.30102 -1.43206 (169*2π)/3972 weeks
1703.60472 -.90287 (170*2π)/3972 weeks
1713.26794 -.73443 (171*2π)/3972 weeks
1723.54662 -1.20201 (172*2π)/3972 weeks
1734.96411 -.14441 (173*2π)/3972 weeks
1743.74098 1.18846 (174*2π)/3972 weeks
1752.00296 .54432 (175*2π)/3972 weeks
1762.19885 -1.10454 (176*2π)/3972 weeks
1773.70068 -1.7934 (177*2π)/3972 weeks
1784.61246 -.73974 (178*2π)/3972 weeks
1793.82631 .45164 (179*2π)/3972 weeks
1803.29086 .01679 (180*2π)/3972 weeks
1813.2427 -.14635 (181*2π)/3972 weeks
1823.28139 -.79806 (182*2π)/3972 weeks
1833.93825 -.90553 (183*2π)/3972 weeks
1844.82965 .29554 (184*2π)/3972 weeks
1853.03655 1.47775 (185*2π)/3972 weeks
1861.47178 -.06831 (186*2π)/3972 weeks
1872.50893 -1.97178 (187*2π)/3972 weeks
1884.10775 -1.21073 (188*2π)/3972 weeks
1893.12676 -.88411 (189*2π)/3972 weeks
1904.32879 -1.69032 (190*2π)/3972 weeks
1914.80318 -.45339 (191*2π)/3972 weeks
1923.56178 -.36154 (192*2π)/3972 weeks
1933.80438 -1.23407 (193*2π)/3972 weeks
1944.518 -1.07766 (194*2π)/3972 weeks
1954.82106 -.69613 (195*2π)/3972 weeks
1964.58049 -.25355 (196*2π)/3972 weeks
1974.84438 -.65861 (197*2π)/3972 weeks
1985.34402 -.38219 (198*2π)/3972 weeks
1995.34402 .38219 (199*2π)/3972 weeks
2004.84438 .65861 (200*2π)/3972 weeks
2014.58049 .25355 (201*2π)/3972 weeks
2024.82106 .69613 (202*2π)/3972 weeks
2034.518 1.07766 (203*2π)/3972 weeks
2043.80438 1.23407 (204*2π)/3972 weeks
2053.56178 .36154 (205*2π)/3972 weeks
2064.80318 .45339 (206*2π)/3972 weeks
2074.32879 1.69032 (207*2π)/3972 weeks
2083.12676 .88411 (208*2π)/3972 weeks
2094.10775 1.21073 (209*2π)/3972 weeks
2102.50893 1.97178 (210*2π)/3972 weeks
2111.47178 .06831 (211*2π)/3972 weeks
2123.03655 -1.47775 (212*2π)/3972 weeks
2134.82965 -.29554 (213*2π)/3972 weeks
2143.93825 .90553 (214*2π)/3972 weeks
2153.28139 .79806 (215*2π)/3972 weeks
2163.2427 .14635 (216*2π)/3972 weeks
2173.29086 -.01679 (217*2π)/3972 weeks
2183.82631 -.45164 (218*2π)/3972 weeks
2194.61246 .73974 (219*2π)/3972 weeks
2203.70068 1.7934 (220*2π)/3972 weeks
2212.19885 1.10454 (221*2π)/3972 weeks
2222.00296 -.54432 (222*2π)/3972 weeks
2233.74098 -1.18846 (223*2π)/3972 weeks
2244.96411 .14441 (224*2π)/3972 weeks
2253.54662 1.20201 (225*2π)/3972 weeks
2263.26794 .73443 (226*2π)/3972 weeks
2273.60472 .90287 (227*2π)/3972 weeks
2283.30102 1.43206 (228*2π)/3972 weeks
2292.39169 1.16245 (229*2π)/3972 weeks
2302.53283 .71322 (230*2π)/3972 weeks
2312.30754 .82294 (231*2π)/3972 weeks
2321.61653 .71448 (232*2π)/3972 weeks
2331.67074 -.47284 (233*2π)/3972 weeks
2342.90583 -.67714 (234*2π)/3972 weeks
2353.24811 .40983 (235*2π)/3972 weeks
2362.2503 .68186 (236*2π)/3972 weeks
2371.93538 .12619 (237*2π)/3972 weeks
2382.07802 -.38339 (238*2π)/3972 weeks
2392.1624 -.58113 (239*2π)/3972 weeks
2402.56808 -.6214 (240*2π)/3972 weeks
2413.21117 -.43354 (241*2π)/3972 weeks
2423.84003 .7364 (242*2π)/3972 weeks
2431.95053 2.43591 (243*2π)/3972 weeks
244-.14892 1.46943 (244*2π)/3972 weeks
245-.55623 -.96177 (245*2π)/3972 weeks
246.77281 -1.83029 (246*2π)/3972 weeks
2471.62036 -.93546 (247*2π)/3972 weeks
248.8532 -.58602 (248*2π)/3972 weeks
249.80825 -.65815 (249*2π)/3972 weeks
250-.65843 -1.51306 (250*2π)/3972 weeks
251.1008 -4.04319 (251*2π)/3972 weeks
2522.93917 -3.84483 (252*2π)/3972 weeks
2532.75813 -1.73793 (253*2π)/3972 weeks
2541.54894 -1.16056 (254*2π)/3972 weeks
255-.18671 -2.17286 (255*2π)/3972 weeks
256.8904 -5.00033 (256*2π)/3972 weeks
2573.36756 -4.51247 (257*2π)/3972 weeks
2583.68179 -3.15221 (258*2π)/3972 weeks
2593.31656 -3.00242 (259*2π)/3972 weeks
2603.58754 -2.95236 (260*2π)/3972 weeks
2613.12743 -2.31836 (261*2π)/3972 weeks
2623.13554 -2.99195 (262*2π)/3972 weeks
2633.55684 -2.50131 (263*2π)/3972 weeks
2643.15628 -2.64557 (264*2π)/3972 weeks
2653.96015 -2.49386 (265*2π)/3971 weeks
2663.14625 -2.09467 (266*2π)/3971 weeks
2672.72137 -2.88451 (267*2π)/3971 weeks
2683.62313 -3.77364 (268*2π)/3971 weeks
2695.16111 -3.32574 (269*2π)/3971 weeks
2705.48354 -1.9786 (270*2π)/3971 weeks
2714.53198 -.67354 (271*2π)/3971 weeks
2723.5777 -.91788 (272*2π)/3971 weeks
2733.57895 -1.59312 (273*2π)/3971 weeks
2743.57527 -1.32259 (274*2π)/3971 weeks
2752.97884 -1.56533 (275*2π)/3971 weeks
2763.87709 -1.7226 (276*2π)/3971 weeks
2773.6587 -.48981 (277*2π)/3971 weeks
2782.29513 -.3106 (278*2π)/3971 weeks
2791.69005 -1.39653 (279*2π)/3971 weeks
2801.28571 -1.78154 (280*2π)/3971 weeks
2811.10686 -2.96127 (281*2π)/3971 weeks
2822.9653 -4.21297 (282*2π)/3971 weeks
2834.45328 -2.0363 (283*2π)/3971 weeks
2842.40452 -.60525 (284*2π)/3971 weeks
285.74266 -1.68964 (285*2π)/3971 weeks
286.69862 -3.10519 (286*2π)/3971 weeks
2871.74993 -4.5615 (287*2π)/3971 weeks
2882.97266 -3.93908 (288*2π)/3971 weeks
2892.00425 -3.11505 (289*2π)/3971 weeks
2901.40155 -4.62175 (290*2π)/3971 weeks
2912.62975 -5.79048 (291*2π)/3971 weeks
2923.94003 -6.29038 (292*2π)/3971 weeks
2936.3353 -5.13954 (293*2π)/3971 weeks
2946.53497 -2.94411 (294*2π)/3971 weeks
2955.40119 -1.8656 (295*2π)/3971 weeks
2963.42814 -1.8289 (296*2π)/3971 weeks
2973.30975 -3.28209 (297*2π)/3971 weeks
2983.92227 -3.06533 (298*2π)/3971 weeks
2994.74941 -3.19809 (299*2π)/3971 weeks
3003.97518 -1.61057 (300*2π)/3971 weeks
3013.62534 -2.61854 (301*2π)/3971 weeks
3024.61297 -2.38795 (302*2π)/3971 weeks
3033.31885 -1.28227 (303*2π)/3971 weeks
3042.58295 -1.99276 (304*2π)/3971 weeks
3051.94494 -3.01388 (305*2π)/3971 weeks
3063.38206 -3.29468 (306*2π)/3971 weeks
3073.53514 -2.36138 (307*2π)/3971 weeks
3081.62719 -1.82692 (308*2π)/3971 weeks
3091.12894 -4.02435 (309*2π)/3971 weeks
3102.26587 -4.18678 (310*2π)/3971 weeks
3112.66938 -5.072 (311*2π)/3971 weeks
3123.32211 -4.68751 (312*2π)/3971 weeks
3132.76747 -4.25683 (313*2π)/3971 weeks
3142.9113 -5.35363 (314*2π)/3971 weeks
3154.53446 -5.44498 (315*2π)/3971 weeks
3165.52175 -4.29796 (316*2π)/3971 weeks
3174.77356 -2.68441 (317*2π)/3971 weeks
3183.18495 -2.31014 (318*2π)/3971 weeks
3192.44496 -3.93265 (319*2π)/3971 weeks
3203.23205 -4.49468 (320*2π)/3971 weeks
3214.01603 -3.12297 (321*2π)/3971 weeks
3222.54606 -3.17549 (322*2π)/3971 weeks
3232.49596 -3.5539 (323*2π)/3971 weeks
3241.26381 -4.90424 (324*2π)/3971 weeks
3253.17934 -5.51701 (325*2π)/3971 weeks
3263.67597 -3.9408 (326*2π)/3971 weeks
3271.42494 -3.9038 (327*2π)/3971 weeks
3281.26435 -6.53896 (328*2π)/3971 weeks
3293.27217 -7.70771 (329*2π)/3971 weeks
3304.30148 -5.97265 (330*2π)/3971 weeks
3313.66378 -5.50084 (331*2π)/3971 weeks
3323.44825 -6.88254 (332*2π)/3971 weeks
3335.46656 -7.89958 (333*2π)/3971 weeks
3346.30645 -7.40463 (334*2π)/3971 weeks
3358.27087 -5.54729 (335*2π)/3971 weeks
3366.89219 -1.20812 (336*2π)/3971 weeks
3372.94939 -3.1967 (337*2π)/3971 weeks
3384.01109 -5.61839 (338*2π)/3971 weeks
3396.00166 -6.56868 (339*2π)/3971 weeks
3409.31711 -3.95731 (340*2π)/3971 weeks
3417.51068 2.01649 (341*2π)/3971 weeks
342.65215 2.11257 (342*2π)/3971 weeks
343-1.42062 -3.7089 (343*2π)/3971 weeks
344.63568 -5.57723 (344*2π)/3971 weeks
3452.43641 -4.98663 (345*2π)/3971 weeks
3463.39015 -3.27284 (346*2π)/3971 weeks
3472.12815 -2.4419 (347*2π)/3971 weeks
348-2.1001 -3.17403 (348*2π)/3971 weeks
349-1.63084 -7.58888 (349*2π)/3971 weeks
350-.75175 -7.08124 (350*2π)/3971 weeks
351.76771 -10.08095 (351*2π)/3971 weeks
3524.10136 -6.68323 (352*2π)/3971 weeks
353.69487 -4.08084 (353*2π)/3971 weeks
354-2.2153 -7.01754 (354*2π)/3971 weeks
355-2.762 -9.71234 (355*2π)/3971 weeks
356-.71814 -13.53218 (356*2π)/3971 weeks
3573.06635 -13.38541 (357*2π)/3971 weeks
3587.08004 -11.51501 (358*2π)/3971 weeks
3595.55029 -4.96494 (359*2π)/3971 weeks
360-.87317 -7.08973 (360*2π)/3971 weeks
361.94081 -11.36397 (361*2π)/3971 weeks
3622.35614 -11.10896 (362*2π)/3971 weeks
3634.09072 -11.46293 (363*2π)/3971 weeks
3644.92921 -9.06902 (364*2π)/3971 weeks
3653.19709 -5.14343 (365*2π)/3971 weeks
366-4.44236 -5.60754 (366*2π)/3971 weeks
367-6.67625 -13.55657 (367*2π)/3971 weeks
368-1.05546 -19.27058 (368*2π)/3971 weeks
3692.30196 -16.02324 (369*2π)/3971 weeks
3703.61207 -16.88548 (370*2π)/3971 weeks
3713.69477 -12.92158 (371*2π)/3971 weeks
372-.29488 -16.27846 (372*2π)/3971 weeks
3733.12242 -18.58212 (373*2π)/3971 weeks
3745.81959 -13.94568 (374*2π)/3971 weeks
3751.34609 -10.99862 (375*2π)/3971 weeks
376-1.54318 -14.50264 (376*2π)/3971 weeks
377-7.19078 -18.14771 (377*2π)/3971 weeks
378-2.38122 -24.93003 (378*2π)/3971 weeks
3791.59186 -23.21913 (379*2π)/3971 weeks
3803.19647 -21.74389 (380*2π)/3971 weeks
381-2.82957 -20.94072 (381*2π)/3971 weeks
382-2.32693 -23.77818 (382*2π)/3971 weeks
383-7.29685 -23.19008 (383*2π)/3971 weeks
384-16.48718 -31.81438 (384*2π)/3971 weeks
385-14.98847 -51.52814 (385*2π)/3971 weeks
3864.9604 -54.21184 (386*2π)/3971 weeks
3875.88833 -44.45821 (387*2π)/3971 weeks
388-.87786 -45.28997 (388*2π)/3971 weeks
389-14.06668 -56.12762 (389*2π)/3971 weeks
390-16.02772 -85.61443 (390*2π)/3971 weeks
39111.25659 -109.1076 (391*2π)/3971 weeks
39233.11194 -98.82233 (392*2π)/3971 weeks
39323.44355 -115.2008 (393*2π)/3971 weeks
39427.15341 -151.7038 (394*2π)/3971 weeks
39558.89905 -230.3941 (395*2π)/3971 weeks



Back to list of Stocks