Back to list of Stocks    See Also: Seasonal Analysis of BIOGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of BIO (Bio-Rad Laboratories, Inc. Clas)


BIO (Bio-Rad Laboratories, Inc. Clas) appears to have interesting cyclic behaviour every 148 weeks (5.3304*sine), 160 weeks (4.2235*sine), and 193 weeks (3.4506*sine).

BIO (Bio-Rad Laboratories, Inc. Clas) has an average price of 41.5 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/27/1980 to 1/17/2017 for BIO (Bio-Rad Laboratories, Inc. Clas), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
041.50348   0 
126.02493 -45.05991 (1*2π)/19251,925 weeks
2-.12573 -22.78629 (2*2π)/1925963 weeks
33.81435 -13.61547 (3*2π)/1925642 weeks
41.73578 -13.67143 (4*2π)/1925481 weeks
51.97849 -7.88099 (5*2π)/1925385 weeks
6.7771 -9.22626 (6*2π)/1925321 weeks
71.04649 -4.85407 (7*2π)/1925275 weeks
81.74045 -7.00634 (8*2π)/1925241 weeks
9-.49361 -6.99674 (9*2π)/1925214 weeks
10-.37723 -3.45056 (10*2π)/1925193 weeks
111.33556 -3.28058 (11*2π)/1925175 weeks
122.26601 -4.22354 (12*2π)/1925160 weeks
13.41725 -5.33039 (13*2π)/1925148 weeks
14-.61953 -4.12802 (14*2π)/1925138 weeks
15-.64027 -3.3548 (15*2π)/1925128 weeks
16-.30384 -2.42316 (16*2π)/1925120 weeks
17.70303 -2.58366 (17*2π)/1925113 weeks
18-.39868 -2.94428 (18*2π)/1925107 weeks
19-.16422 -1.20518 (19*2π)/1925101 weeks
201.74748 -1.75898 (20*2π)/192596 weeks
211.46485 -2.703 (21*2π)/192592 weeks
22.59683 -3.28528 (22*2π)/192588 weeks
23-.31071 -2.36414 (23*2π)/192584 weeks
24.1357 -1.20915 (24*2π)/192580 weeks
251.96094 -1.5721 (25*2π)/192577 weeks
261.74445 -3.20368 (26*2π)/192574 weeks
27.50121 -3.15273 (27*2π)/192571 weeks
28-.2171 -3.29114 (28*2π)/192569 weeks
29-.74872 -2.2526 (29*2π)/192566 weeks
30.42144 -1.73046 (30*2π)/192564 weeks
31.35126 -2.0909 (31*2π)/192562 weeks
32.32056 -2.27818 (32*2π)/192560 weeks
33-.18983 -2.89904 (33*2π)/192558 weeks
34-1.49896 -2.12963 (34*2π)/192557 weeks
35-.68266 -.73745 (35*2π)/192555 weeks
36.38727 -1.1416 (36*2π)/192553 weeks
37-.08356 -.92059 (37*2π)/192552 weeks
38.24065 -1.24175 (38*2π)/192551 weeks
39.2281 -1.22099 (39*2π)/192549 weeks
40.88905 -1.79835 (40*2π)/192548 weeks
41-.24682 -2.29609 (41*2π)/192547 weeks
42-1.20552 -1.19743 (42*2π)/192546 weeks
43.12064 -.01161 (43*2π)/192545 weeks
44.93644 -1.1337 (44*2π)/192544 weeks
45.10518 -1.66439 (45*2π)/192543 weeks
46.06756 -1.41827 (46*2π)/192542 weeks
47-.07876 -1.05966 (47*2π)/192541 weeks
48.59551 -.9797 (48*2π)/192540 weeks
49.28472 -1.76569 (49*2π)/192539 weeks
50-.28863 -1.48953 (50*2π)/192539 weeks
51-.19058 -.73735 (51*2π)/192538 weeks
52.44003 -1.32704 (52*2π)/192537 weeks
53-.01548 -1.53448 (53*2π)/192536 weeks
54-.20109 -1.18841 (54*2π)/192536 weeks
55-.15178 -1.12339 (55*2π)/192535 weeks
56-.54134 -.92506 (56*2π)/192534 weeks
57.3472 -.62549 (57*2π)/192534 weeks
58.06842 -1.25393 (58*2π)/192533 weeks
59-.07975 -.84201 (59*2π)/192533 weeks
60.20445 -.88508 (60*2π)/192532 weeks
61.06629 -1.18736 (61*2π)/192532 weeks
62-.14749 -1.12978 (62*2π)/192531 weeks
63-.1465 -1.15844 (63*2π)/192531 weeks
64-.28767 -.57948 (64*2π)/192530 weeks
65.36955 -.58664 (65*2π)/192530 weeks
66.23915 -1.00177 (66*2π)/192529 weeks
67.10202 -1.20774 (67*2π)/192529 weeks
68-.08102 -1.45218 (68*2π)/192528 weeks
69-.49693 -.69074 (69*2π)/192528 weeks
70.36857 -.60267 (70*2π)/192528 weeks
71-.07429 -1.38444 (71*2π)/192527 weeks
72-.52646 -.77949 (72*2π)/192527 weeks
73.13829 -.76329 (73*2π)/192526 weeks
74-.37597 -1.05783 (74*2π)/192526 weeks
75-.15679 -.30377 (75*2π)/192526 weeks
76.33708 -.79664 (76*2π)/192525 weeks
77.02689 -1.12438 (77*2π)/192525 weeks
78-.28356 -.96239 (78*2π)/192525 weeks
79-.26816 -.78435 (79*2π)/192524 weeks
80-.23518 -.75377 (80*2π)/192524 weeks
81-.37591 -.79866 (81*2π)/192524 weeks
82-.44367 -.41114 (82*2π)/192523 weeks
83.01791 -.33216 (83*2π)/192523 weeks
84.07989 -.5285 (84*2π)/192523 weeks
85.04992 -.52967 (85*2π)/192523 weeks
86.00454 -.61458 (86*2π)/192522 weeks
87.09606 -.6032 (87*2π)/192522 weeks
88.03562 -.88735 (88*2π)/192522 weeks
89-.08403 -.66355 (89*2π)/192522 weeks
90-.21052 -.62527 (90*2π)/192521 weeks
91-.22687 -.1906 (91*2π)/192521 weeks
92.45584 -.39601 (92*2π)/192521 weeks
93.30738 -1.0771 (93*2π)/192521 weeks
94-.28473 -.78719 (94*2π)/192520 weeks
95-.13223 -.49342 (95*2π)/192520 weeks
96.14062 -.52932 (96*2π)/192520 weeks
97.15487 -.72405 (97*2π)/192520 weeks
98-.11559 -.81247 (98*2π)/192520 weeks
99-.2108 -.50431 (99*2π)/192519 weeks
100.18643 -.52308 (100*2π)/192519 weeks
101.03575 -.76258 (101*2π)/192519 weeks
102-.05788 -.67049 (102*2π)/192519 weeks
103.00802 -.63376 (103*2π)/192519 weeks
104-.06406 -.57351 (104*2π)/192519 weeks
105.07691 -.65855 (105*2π)/192518 weeks
106-.00356 -.86365 (106*2π)/192518 weeks
107-.11627 -.85017 (107*2π)/192518 weeks
108-.34183 -.6074 (108*2π)/192518 weeks
109-.11726 -.46605 (109*2π)/192518 weeks
110.02449 -.63023 (110*2π)/192518 weeks
111-.17952 -.9263 (111*2π)/192517 weeks
112-.57961 -.48417 (112*2π)/192517 weeks
113-.13975 -.11257 (113*2π)/192517 weeks
114.26356 -.43802 (114*2π)/192517 weeks
115-.05858 -.78074 (115*2π)/192517 weeks
116-.24862 -.60199 (116*2π)/192517 weeks
117-.26987 -.37091 (117*2π)/192516 weeks
118-.01464 -.21323 (118*2π)/192516 weeks
119.17753 -.47443 (119*2π)/192516 weeks
120.11067 -.69708 (120*2π)/192516 weeks
121-.1378 -.69537 (121*2π)/192516 weeks
122-.21898 -.453 (122*2π)/192516 weeks
123-.08419 -.35333 (123*2π)/192516 weeks
124.15429 -.38209 (124*2π)/192516 weeks
125.09395 -.64888 (125*2π)/192515 weeks
126-.12443 -.65184 (126*2π)/192515 weeks
127.10505 -.57119 (127*2π)/192515 weeks
128-.07973 -.7718 (128*2π)/192515 weeks
129-.31564 -.64654 (129*2π)/192515 weeks
130-.28325 -.56958 (130*2π)/192515 weeks
131-.3388 -.46885 (131*2π)/192515 weeks
132-.20615 -.39051 (132*2π)/192515 weeks
133-.16016 -.34406 (133*2π)/192514 weeks
134-.19816 -.3058 (134*2π)/192514 weeks
135-.08895 -.28489 (135*2π)/192514 weeks
136.04152 -.4444 (136*2π)/192514 weeks
137-.03737 -.45312 (137*2π)/192514 weeks
138-.03727 -.50828 (138*2π)/192514 weeks
139-.24625 -.44225 (139*2π)/192514 weeks
140-.00079 -.2403 (140*2π)/192514 weeks
141.21307 -.65509 (141*2π)/192514 weeks
142-.31176 -.88164 (142*2π)/192514 weeks
143-.42608 -.34192 (143*2π)/192513 weeks
144-.21895 -.29137 (144*2π)/192513 weeks
145-.14487 -.29927 (145*2π)/192513 weeks
146-.0495 -.40037 (146*2π)/192513 weeks
147-.17318 -.42483 (147*2π)/192513 weeks
148-.08667 -.39055 (148*2π)/192513 weeks
149-.22691 -.53743 (149*2π)/192513 weeks
150-.26046 -.29373 (150*2π)/192513 weeks
151-.20058 -.29198 (151*2π)/192513 weeks
152-.21432 -.15306 (152*2π)/192513 weeks
153.06896 -.2502 (153*2π)/192513 weeks
154.00097 -.37058 (154*2π)/192513 weeks
155-.02299 -.40859 (155*2π)/192512 weeks
156-.15001 -.41405 (156*2π)/192512 weeks
157-.16202 -.23956 (157*2π)/192512 weeks
158.0683 -.26573 (158*2π)/192512 weeks
159.01743 -.48495 (159*2π)/192512 weeks
160-.15707 -.43182 (160*2π)/192512 weeks
161-.09335 -.27532 (161*2π)/192512 weeks
162-.02674 -.40338 (162*2π)/192512 weeks
163-.09149 -.43912 (163*2π)/192512 weeks
164-.09496 -.43409 (164*2π)/192512 weeks
165-.27354 -.4113 (165*2π)/192512 weeks
166-.12482 -.16047 (166*2π)/192512 weeks
167-.02866 -.35321 (167*2π)/192512 weeks
168-.16127 -.29545 (168*2π)/192511 weeks
169.01645 -.16173 (169*2π)/192511 weeks
170.17518 -.42948 (170*2π)/192511 weeks
171-.07594 -.53984 (171*2π)/192511 weeks
172-.16016 -.42722 (172*2π)/192511 weeks
173-.21666 -.33486 (173*2π)/192511 weeks
174-.08763 -.23975 (174*2π)/192511 weeks
175.03115 -.3324 (175*2π)/192511 weeks
176-.08166 -.44393 (176*2π)/192511 weeks
177-.16599 -.33478 (177*2π)/192511 weeks
178-.03361 -.27567 (178*2π)/192511 weeks
179.03446 -.42992 (179*2π)/192511 weeks
180-.11873 -.46811 (180*2π)/192511 weeks
181-.15095 -.43463 (181*2π)/192511 weeks
182-.27284 -.40335 (182*2π)/192511 weeks
183-.18837 -.24399 (183*2π)/192511 weeks
184-.11377 -.35271 (184*2π)/192510 weeks
185-.16541 -.37328 (185*2π)/192510 weeks
186-.23277 -.33417 (186*2π)/192510 weeks
187-.23794 -.24542 (187*2π)/192510 weeks
188-.13834 -.24743 (188*2π)/192510 weeks
189-.20588 -.32413 (189*2π)/192510 weeks
190-.27317 -.20642 (190*2π)/192510 weeks
191-.13629 -.05372 (191*2π)/192510 weeks
192.01925 -.24816 (192*2π)/192510 weeks
193-.16385 -.23873 (193*2π)/192510 weeks
194-.05034 -.17533 (194*2π)/192510 weeks
195-.06935 -.27658 (195*2π)/192510 weeks
196-.11775 -.22837 (196*2π)/192510 weeks
197-.05037 -.25878 (197*2π)/192510 weeks
198-.16963 -.24811 (198*2π)/192510 weeks
199-.00361 -.06656 (199*2π)/192510 weeks
200.08073 -.30455 (200*2π)/192510 weeks
201-.09831 -.36899 (201*2π)/192510 weeks
202-.08592 -.25077 (202*2π)/192510 weeks
203-.02787 -.2883 (203*2π)/19259 weeks
204-.06663 -.28086 (204*2π)/19259 weeks
205-.07375 -.34997 (205*2π)/19259 weeks
206-.17606 -.29569 (206*2π)/19259 weeks
207-.09533 -.20434 (207*2π)/19259 weeks
208-.11224 -.27946 (208*2π)/19259 weeks
209-.1291 -.18526 (209*2π)/19259 weeks
210-.05684 -.26553 (210*2π)/19259 weeks
211-.15496 -.23889 (211*2π)/19259 weeks
212-.03146 -.10205 (212*2π)/19259 weeks
213.02737 -.33137 (213*2π)/19259 weeks
214-.12555 -.28136 (214*2π)/19259 weeks
215-.08633 -.26869 (215*2π)/19259 weeks
216-.19162 -.27367 (216*2π)/19259 weeks
217-.07592 -.06474 (217*2π)/19259 weeks
218.09037 -.26042 (218*2π)/19259 weeks
219-.09187 -.31362 (219*2π)/19259 weeks
220-.07014 -.26363 (220*2π)/19259 weeks
221-.10142 -.27417 (221*2π)/19259 weeks
222-.06904 -.21857 (222*2π)/19259 weeks
223-.04548 -.32903 (223*2π)/19259 weeks
224-.21701 -.246 (224*2π)/19259 weeks
225-.07357 -.14185 (225*2π)/19259 weeks
226-.0382 -.2506 (226*2π)/19259 weeks
227-.04806 -.24143 (227*2π)/19258 weeks
228-.1411 -.28616 (228*2π)/19258 weeks
229-.10308 -.14913 (229*2π)/19258 weeks
230-.04492 -.16421 (230*2π)/19258 weeks
231.00991 -.19201 (231*2π)/19258 weeks
232.04841 -.24265 (232*2π)/19258 weeks
233-.04448 -.3598 (233*2π)/19258 weeks
234-.06335 -.25988 (234*2π)/19258 weeks
235-.07604 -.34414 (235*2π)/19258 weeks
236-.18615 -.19382 (236*2π)/19258 weeks
237-.05492 -.17177 (237*2π)/19258 weeks
238-.05655 -.24607 (238*2π)/19258 weeks
239-.04468 -.11409 (239*2π)/19258 weeks
240.17851 -.21182 (240*2π)/19258 weeks
241-.00471 -.48037 (241*2π)/19258 weeks
242-.15403 -.35886 (242*2π)/19258 weeks
243-.12268 -.23728 (243*2π)/19258 weeks
244-.1157 -.22057 (244*2π)/19258 weeks
245-.02706 -.16617 (245*2π)/19258 weeks
246.01615 -.30812 (246*2π)/19258 weeks
247-.07145 -.347 (247*2π)/19258 weeks
248-.09708 -.29008 (248*2π)/19258 weeks
249-.0969 -.32457 (249*2π)/19258 weeks
250-.20587 -.21425 (250*2π)/19258 weeks
251-.05415 -.19061 (251*2π)/19258 weeks
252-.02604 -.32353 (252*2π)/19258 weeks
253-.15477 -.2864 (253*2π)/19258 weeks
254-.09124 -.25544 (254*2π)/19258 weeks
255-.15107 -.26139 (255*2π)/19258 weeks
256-.0339 -.24538 (256*2π)/19258 weeks
257-.14676 -.34294 (257*2π)/19257 weeks
258-.17033 -.20912 (258*2π)/19257 weeks
259-.12924 -.26677 (259*2π)/19257 weeks
260-.17248 -.2445 (260*2π)/19257 weeks
261-.1393 -.19007 (261*2π)/19257 weeks
262-.04407 -.27185 (262*2π)/19257 weeks
263-.19731 -.30563 (263*2π)/19257 weeks
264-.30466 -.18037 (264*2π)/19257 weeks
265-.14823 -.01626 (265*2π)/19257 weeks
266.02801 -.17878 (266*2π)/19257 weeks
267-.05281 -.23132 (267*2π)/19257 weeks
268-.07771 -.28315 (268*2π)/19257 weeks
269-.19732 -.23536 (269*2π)/19257 weeks
270-.15065 -.17018 (270*2π)/19257 weeks
271-.18218 -.17736 (271*2π)/19257 weeks
272-.09339 -.0301 (272*2π)/19257 weeks
273.06743 -.15819 (273*2π)/19257 weeks
274-.02173 -.26741 (274*2π)/19257 weeks
275-.10999 -.31964 (275*2π)/19257 weeks
276-.21125 -.23356 (276*2π)/19257 weeks
277-.09413 -.08594 (277*2π)/19257 weeks
278.00711 -.22411 (278*2π)/19257 weeks
279-.12969 -.25397 (279*2π)/19257 weeks
280-.14182 -.19428 (280*2π)/19257 weeks
281-.1227 -.15869 (281*2π)/19257 weeks
282-.02859 -.14342 (282*2π)/19257 weeks
283-.01409 -.25982 (283*2π)/19257 weeks
284-.16428 -.28088 (284*2π)/19257 weeks
285-.15592 -.16687 (285*2π)/19257 weeks
286-.07986 -.20144 (286*2π)/19257 weeks
287-.12936 -.17473 (287*2π)/19257 weeks
288-.07053 -.17051 (288*2π)/19257 weeks
289-.06493 -.23942 (289*2π)/19257 weeks
290-.16196 -.25289 (290*2π)/19257 weeks
291-.15578 -.16856 (291*2π)/19257 weeks
292-.05849 -.10444 (292*2π)/19257 weeks
293-.02394 -.25113 (293*2π)/19257 weeks
294-.17458 -.22839 (294*2π)/19257 weeks
295-.16548 -.13742 (295*2π)/19257 weeks
296-.0071 -.15867 (296*2π)/19257 weeks
297-.08551 -.25471 (297*2π)/19256 weeks
298-.16098 -.27697 (298*2π)/19256 weeks
299-.23257 -.1187 (299*2π)/19256 weeks
300-.05277 -.09942 (300*2π)/19256 weeks
301-.03287 -.21492 (301*2π)/19256 weeks
302-.15253 -.25225 (302*2π)/19256 weeks
303-.17256 -.17055 (303*2π)/19256 weeks
304-.17396 -.09461 (304*2π)/19256 weeks
305-.01056 -.1068 (305*2π)/19256 weeks
306-.02343 -.27772 (306*2π)/19256 weeks
307-.22179 -.24398 (307*2π)/19256 weeks
308-.15659 -.10333 (308*2π)/19256 weeks
309-.14088 -.15765 (309*2π)/19256 weeks
310-.12613 -.11298 (310*2π)/19256 weeks
311-.09204 -.15063 (311*2π)/19256 weeks
312-.11368 -.14054 (312*2π)/19256 weeks
313-.08861 -.11712 (313*2π)/19256 weeks
314-.07083 -.1719 (314*2π)/19256 weeks
315-.12313 -.10166 (315*2π)/19256 weeks
316-.0175 -.12987 (316*2π)/19256 weeks
317-.1164 -.19888 (317*2π)/19256 weeks
318-.06912 -.15215 (318*2π)/19256 weeks
319-.10224 -.15856 (319*2π)/19256 weeks
320-.07976 -.09991 (320*2π)/19256 weeks
321-.02918 -.15991 (321*2π)/19256 weeks
322-.13083 -.19828 (322*2π)/19256 weeks
323-.12327 -.07126 (323*2π)/19256 weeks
324-.0072 -.10286 (324*2π)/19256 weeks
325.01608 -.13779 (325*2π)/19256 weeks
326.01219 -.20657 (326*2π)/19256 weeks
327-.09389 -.24376 (327*2π)/19256 weeks
328-.12374 -.18189 (328*2π)/19256 weeks
329-.07302 -.1336 (329*2π)/19256 weeks
330-.00001 -.19222 (330*2π)/19256 weeks
331-.09203 -.23695 (331*2π)/19256 weeks
332-.13528 -.14504 (332*2π)/19256 weeks
333-.02974 -.24541 (333*2π)/19256 weeks
334-.20727 -.26057 (334*2π)/19256 weeks
335-.14142 -.07771 (335*2π)/19256 weeks
336-.06725 -.14301 (336*2π)/19256 weeks
337-.1476 -.13027 (337*2π)/19256 weeks
338-.04713 -.08304 (338*2π)/19256 weeks
339-.0244 -.18282 (339*2π)/19256 weeks
340-.01487 -.15777 (340*2π)/19256 weeks
341-.02769 -.28383 (341*2π)/19256 weeks
342-.24021 -.2537 (342*2π)/19256 weeks
343-.15881 -.04393 (343*2π)/19256 weeks
344.0482 -.13172 (344*2π)/19256 weeks
345-.0863 -.28083 (345*2π)/19256 weeks
346-.18617 -.18726 (346*2π)/19256 weeks
347-.13328 -.09438 (347*2π)/19256 weeks
348-.01643 -.11717 (348*2π)/19256 weeks
349.01486 -.22601 (349*2π)/19256 weeks
350-.11298 -.2936 (350*2π)/19256 weeks
351-.18789 -.1751 (351*2π)/19255 weeks
352-.09518 -.14064 (352*2π)/19255 weeks
353-.09569 -.24702 (353*2π)/19255 weeks
354-.17231 -.19482 (354*2π)/19255 weeks
355-.12813 -.13501 (355*2π)/19255 weeks
356-.10438 -.19455 (356*2π)/19255 weeks
357-.156 -.20635 (357*2π)/19255 weeks
358-.18621 -.16442 (358*2π)/19255 weeks
359-.19879 -.13222 (359*2π)/19255 weeks
360-.16041 -.05905 (360*2π)/19255 weeks
361-.0885 -.08984 (361*2π)/19255 weeks
362-.0622 -.11874 (362*2π)/19255 weeks
363-.12867 -.17512 (363*2π)/19255 weeks
364-.14854 -.12021 (364*2π)/19255 weeks
365-.1147 -.08919 (365*2π)/19255 weeks
366-.07659 -.11994 (366*2π)/19255 weeks
367-.12336 -.15199 (367*2π)/19255 weeks
368-.14214 -.10902 (368*2π)/19255 weeks
369-.1038 -.11071 (369*2π)/19255 weeks
370-.11226 -.10121 (370*2π)/19255 weeks
371-.08341 -.07943