Back to list of Stocks    See Also: Seasonal Analysis of BIOGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of BIO (Bio-Rad Laboratories, Inc. Clas)


BIO (Bio-Rad Laboratories, Inc. Clas) appears to have interesting cyclic behaviour every 149 weeks (5.5489*sine), 161 weeks (4.9312*sine), and 176 weeks (3.7784*sine).

BIO (Bio-Rad Laboratories, Inc. Clas) has an average price of 42.21 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 2/27/1980 to 3/20/2017 for BIO (Bio-Rad Laboratories, Inc. Clas), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
042.21318   0 
126.60372 -45.67243 (1*2π)/19341,934 weeks
2.34099 -22.92082 (2*2π)/1934967 weeks
34.36757 -13.9447 (3*2π)/1934645 weeks
42.04523 -13.89714 (4*2π)/1934484 weeks
52.48255 -8.15572 (5*2π)/1934387 weeks
61.03823 -9.40915 (6*2π)/1934322 weeks
71.623 -5.13574 (7*2π)/1934276 weeks
81.90351 -7.42444 (8*2π)/1934242 weeks
9-.39593 -6.97607 (9*2π)/1934215 weeks
10.27113 -3.48868 (10*2π)/1934193 weeks
111.92202 -3.77844 (11*2π)/1934176 weeks
122.41372 -4.93121 (12*2π)/1934161 weeks
13.21394 -5.54892 (13*2π)/1934149 weeks
14-.52218 -4.03299 (14*2π)/1934138 weeks
15-.29579 -3.26891 (15*2π)/1934129 weeks
16.27992 -2.52211 (16*2π)/1934121 weeks
171.11175 -2.99363 (17*2π)/1934114 weeks
18-.06966 -3.00729 (18*2π)/1934107 weeks
19.73494 -1.52787 (19*2π)/1934102 weeks
202.23143 -2.81061 (20*2π)/193497 weeks
211.36839 -3.58212 (21*2π)/193492 weeks
22.27932 -3.66618 (22*2π)/193488 weeks
23-.14418 -2.41296 (23*2π)/193484 weeks
24.78061 -1.71018 (24*2π)/193481 weeks
252.08336 -2.91713 (25*2π)/193477 weeks
26.88381 -4.17594 (26*2π)/193474 weeks
27-.33387 -3.36908 (27*2π)/193472 weeks
28-.89823 -3.03091 (28*2π)/193469 weeks
29-.71853 -1.86097 (29*2π)/193467 weeks
30.53799 -2.0299 (30*2π)/193464 weeks
31.11153 -2.34257 (31*2π)/193462 weeks
32-.11625 -2.40625 (32*2π)/193460 weeks
33-.84074 -2.47459 (33*2π)/193459 weeks
34-1.27272 -1.077 (34*2π)/193457 weeks
35.33318 -.57609 (35*2π)/193455 weeks
36.8281 -1.62826 (36*2π)/193454 weeks
37.35404 -1.23739 (37*2π)/193452 weeks
38.39512 -1.75685 (38*2π)/193451 weeks
39.30195 -1.74234 (39*2π)/193450 weeks
40.33972 -2.41644 (40*2π)/193448 weeks
41-.82621 -1.83336 (41*2π)/193447 weeks
42-.53116 -.48282 (42*2π)/193446 weeks
431.17942 -.7918 (43*2π)/193445 weeks
44.67076 -2.21826 (44*2π)/193444 weeks
45-.36995 -1.84474 (45*2π)/193443 weeks
46-.08849 -1.53178 (46*2π)/193442 weeks
47.05239 -1.24973 (47*2π)/193441 weeks
48.42169 -1.68174 (48*2π)/193440 weeks
49-.44012 -1.8542 (49*2π)/193439 weeks
50-.46026 -1.13638 (50*2π)/193439 weeks
51.15351 -.88688 (51*2π)/193438 weeks
52.02007 -1.75757 (52*2π)/193437 weeks
53-.43534 -1.34252 (53*2π)/193436 weeks
54-.19993 -.96213 (54*2π)/193436 weeks
55-.1016 -1.00761 (55*2π)/193435 weeks
56-.13279 -.74756 (56*2π)/193435 weeks
57.52326 -1.30949 (57*2π)/193434 weeks
58-.27791 -1.35922 (58*2π)/193433 weeks
59.01444 -.96457 (59*2π)/193433 weeks
60.03812 -1.25231 (60*2π)/193432 weeks
61-.31641 -1.2161 (61*2π)/193432 weeks
62-.28733 -.96757 (62*2π)/193431 weeks
63-.18102 -.9833 (63*2π)/193431 weeks
64.19297 -.69028 (64*2π)/193430 weeks
65.2863 -1.31986 (65*2π)/193430 weeks
66-.30859 -1.26067 (66*2π)/193429 weeks
67-.45911 -1.10626 (67*2π)/193429 weeks
68-.51361 -.93421 (68*2π)/193428 weeks
69.04095 -.37615 (69*2π)/193428 weeks
70.25331 -1.18692 (70*2π)/193428 weeks
71-.64483 -.9247 (71*2π)/193427 weeks
72-.07383 -.37242 (72*2π)/193427 weeks
73.12356 -1.04149 (73*2π)/193426 weeks
74-.31363 -.64472 (74*2π)/193426 weeks
75.39759 -.70482 (75*2π)/193426 weeks
76-.13089 -1.26155 (76*2π)/193425 weeks
77-.44792 -.81568 (77*2π)/193425 weeks
78-.20868 -.49205 (78*2π)/193425 weeks
79.00477 -.57484 (79*2π)/193424 weeks
80.01398 -.64475 (80*2π)/193424 weeks
81-.00945 -.59057 (81*2π)/193424 weeks
82.30738 -.60072 (82*2π)/193424 weeks
83.28798 -1.06885 (83*2π)/193423 weeks
84-.03411 -1.01904 (84*2π)/193423 weeks
85-.07153 -.89403 (85*2π)/193423 weeks
86-.17061 -.8552 (86*2π)/193422 weeks
87-.14816 -.88391 (87*2π)/193422 weeks
88-.33296 -.79913 (88*2π)/193422 weeks
89-.03592 -.6181 (89*2π)/193422 weeks
90-.03385 -.61769 (90*2π)/193421 weeks
91.19077 -.72722 (91*2π)/193421 weeks
92-.18895 -1.27414 (92*2π)/193421 weeks
93-.69082 -.80513 (93*2π)/193421 weeks
94-.17279 -.26766 (94*2π)/193421 weeks
95.05066 -.66243 (95*2π)/193420 weeks
96-.13315 -.8575 (96*2π)/193420 weeks
97-.31606 -.69369 (97*2π)/193420 weeks
98-.2649 -.44329 (98*2π)/193420 weeks
99.01851 -.52121 (99*2π)/193420 weeks
100-.14031 -.85328 (100*2π)/193419 weeks
101-.34024 -.54455 (101*2π)/193419 weeks
102-.14626 -.49172 (102*2π)/193419 weeks
103-.13044 -.56786 (103*2π)/193419 weeks
104-.1355 -.4963 (104*2π)/193419 weeks
105-.24212 -.58778 (105*2π)/193418 weeks
106-.29745 -.42034 (106*2π)/193418 weeks
107-.08496 -.3465 (107*2π)/193418 weeks
108.1307 -.32451 (108*2π)/193418 weeks
109.05988 -.63693 (109*2π)/193418 weeks
110-.16491 -.58561 (110*2π)/193418 weeks
111-.16822 -.33455 (111*2π)/193417 weeks
112.33729 -.33257 (112*2π)/193417 weeks
113.20515 -.92373 (113*2π)/193417 weeks
114-.3306 -.84486 (114*2π)/193417 weeks
115-.31184 -.31917 (115*2π)/193417 weeks
116.06644 -.39533 (116*2π)/193417 weeks
117.11532 -.5887 (117*2π)/193417 weeks
118-.05385 -.78064 (118*2π)/193416 weeks
119-.37145 -.64068 (119*2π)/193416 weeks
120-.30089 -.3852 (120*2π)/193416 weeks
121-.04898 -.27817 (121*2π)/193416 weeks
122.10709 -.45812 (122*2π)/193416 weeks
123-.05121 -.61544 (123*2π)/193416 weeks
124-.21738 -.60081 (124*2π)/193416 weeks
125-.29451 -.31193 (125*2π)/193415 weeks
126-.0712 -.24848 (126*2π)/193415 weeks
127-.04422 -.47031 (127*2π)/193415 weeks
128-.04982 -.18829 (128*2π)/193415 weeks
129.19046 -.26682 (129*2π)/193415 weeks
130.13826 -.49223 (130*2π)/193415 weeks
131.1318 -.53864 (131*2π)/193415 weeks
132.03475 -.66478 (132*2π)/193415 weeks
133-.01681 -.60214 (133*2π)/193415 weeks
134-.06421 -.5436 (134*2π)/193414 weeks
135-.16951 -.58515 (135*2π)/193414 weeks
136-.26224 -.49421 (136*2π)/193414 weeks
137-.10165 -.37594 (137*2π)/193414 weeks
138-.09033 -.38487 (138*2π)/193414 weeks
139.01857 -.36287 (139*2π)/193414 weeks
140-.10158 -.59095 (140*2π)/193414 weeks
141-.32235 -.30302 (141*2π)/193414 weeks
142.13739 -.07381 (142*2π)/193414 weeks
143.37216 -.63212 (143*2π)/193414 weeks
144-.07459 -.68808 (144*2π)/193413 weeks
145-.14521 -.55789 (145*2π)/193413 weeks
146-.18365 -.47853 (146*2π)/193413 weeks
147-.05944 -.39558 (147*2π)/193413 weeks
148-.08152 -.49845 (148*2π)/193413 weeks
149-.05677 -.38649 (149*2π)/193413 weeks
150.04811 -.60269 (150*2π)/193413 weeks
151-.15086 -.56784 (151*2π)/193413 weeks
152-.15789 -.55152 (152*2π)/193413 weeks
153-.36758 -.50459 (153*2π)/193413 weeks
154-.192 -.2855 (154*2π)/193413 weeks
155-.10877 -.33316 (155*2π)/193412 weeks
156-.04211 -.35162 (156*2π)/193412 weeks
157-.07539 -.48155 (157*2π)/193412 weeks
158-.26161 -.425 (158*2π)/193412 weeks
159-.14726 -.21441 (159*2π)/193412 weeks
160.03616 -.33588 (160*2π)/193412 weeks
161-.06699 -.46876 (161*2π)/193412 weeks
162-.16826 -.32987 (162*2π)/193412 weeks
163-.04306 -.33756 (163*2π)/193412 weeks
164-.03126 -.40681 (164*2π)/193412 weeks
165.0027 -.4172 (165*2π)/193412 weeks
166-.13798 -.58215 (166*2π)/193412 weeks
167-.25358 -.31373 (167*2π)/193412 weeks
168-.06891 -.35321 (168*2π)/193412 weeks
169-.2053 -.41446 (169*2π)/193411 weeks
170-.20931 -.16892 (170*2π)/193411 weeks
171.11464 -.19795 (171*2π)/193411 weeks
172.07053 -.44339 (172*2π)/193411 weeks
173-.04044 -.45979 (173*2π)/193411 weeks
174-.17096 -.45465 (174*2π)/193411 weeks
175-.16516 -.29821 (175*2π)/193411 weeks
176-.00944 -.26356 (176*2π)/193411 weeks
177-.00484 -.41669 (177*2π)/193411 weeks
178-.14151 -.39921 (178*2π)/193411 weeks
179-.08615 -.26328 (179*2π)/193411 weeks
180.07868 -.33144 (180*2π)/193411 weeks
181.00234 -.45138 (181*2π)/193411 weeks
182-.02958 -.46291 (182*2π)/193411 weeks
183-.16358 -.523 (183*2π)/193411 weeks
184-.19284 -.34605 (184*2π)/193411 weeks
185-.08236 -.39104 (185*2π)/193410 weeks
186-.10339 -.43831 (186*2π)/193410 weeks
187-.18282 -.44658 (187*2π)/193410 weeks
188-.24433 -.37149 (188*2π)/193410 weeks
189-.15944 -.32134 (189*2π)/193410 weeks
190-.18656 -.42137 (190*2π)/193410 weeks
191-.30926 -.35264 (191*2π)/193410 weeks
192-.26125 -.13843 (192*2π)/193410 weeks
193-.03604 -.24319 (193*2π)/193410 weeks
194-.19908 -.29551 (194*2π)/193410 weeks
195-.11525 -.19526 (195*2π)/193410 weeks
196-.09469 -.2913 (196*2π)/193410 weeks
197-.15358 -.26114 (197*2π)/193410 weeks
198-.07777 -.27263 (198*2π)/193410 weeks
199-.19963 -.29783 (199*2π)/193410 weeks
200-.0865 -.06893 (200*2π)/193410 weeks
201.06436 -.26702 (201*2π)/193410 weeks
202-.08688 -.37958 (202*2π)/193410 weeks
203-.10194 -.26824 (203*2π)/193410 weeks
204-.03676 -.29321 (204*2π)/19349 weeks
205-.07198 -.29183 (205*2π)/19349 weeks
206-.06749 -.36494 (206*2π)/19349 weeks
207-.17876 -.32906 (207*2π)/19349 weeks
208-.11187 -.22694 (208*2π)/19349 weeks
209-.12045 -.30136 (209*2π)/19349 weeks
210-.1453 -.20769 (210*2π)/19349 weeks
211-.0668 -.28155 (211*2π)/19349 weeks
212-.16557 -.2608 (212*2π)/19349 weeks
213-.04602 -.11805 (213*2π)/19349 weeks
214.01989 -.34651 (214*2π)/19349 weeks
215-.13327 -.29904 (215*2π)/19349 weeks
216-.09434 -.28638 (216*2π)/19349 weeks
217-.19804 -.287 (217*2π)/19349 weeks
218-.0706 -.08536 (218*2π)/19349 weeks
219.08218 -.29452 (219*2π)/19349 weeks
220-.10669 -.33379 (220*2π)/19349 weeks
221-.08005 -.28421 (221*2π)/19349 weeks
222-.1115 -.29112 (222*2π)/19349 weeks
223-.07284 -.24163 (223*2π)/19349 weeks
224-.06819 -.35141 (224*2π)/19349 weeks
225-.21995 -.23936 (225*2π)/19349 weeks
226-.05441 -.1668 (226*2π)/19349 weeks
227-.04356 -.28512 (227*2π)/19349 weeks
228-.05763 -.27135 (228*2π)/19348 weeks
229-.15288 -.29088 (229*2π)/19348 weeks
230-.07696 -.16849 (230*2π)/19348 weeks
231-.02401 -.21063 (231*2π)/19348 weeks
232.01444 -.25929 (232*2π)/19348 weeks
233.02145 -.32063 (233*2π)/19348 weeks
234-.10646 -.39449 (234*2π)/19348 weeks
235-.09304 -.2846 (235*2π)/19348 weeks
236-.1292 -.35141 (236*2π)/19348 weeks
237-.17006 -.17432 (237*2π)/19348 weeks
238-.0326 -.21813 (238*2π)/19348 weeks
239-.06489 -.28878 (239*2π)/19348 weeks
240-.00716 -.18719 (240*2π)/19348 weeks
241.12037 -.37874 (241*2π)/19348 weeks
242-.1804 -.51344 (242*2π)/19348 weeks
243-.23625 -.30337 (243*2π)/19348 weeks
244-.13579 -.21583 (244*2π)/19348 weeks
245-.1171 -.22341 (245*2π)/19348 weeks
246-.02724 -.23546 (246*2π)/19348 weeks
247-.08131 -.37684 (247*2π)/19348 weeks
248-.17893 -.33931 (248*2π)/19348 weeks
249-.16355 -.26716 (249*2π)/19348 weeks
250-.17462 -.2861 (250*2π)/19348 weeks
251-.19211 -.14834 (251*2π)/19348 weeks
252-.05525 -.23848 (252*2π)/19348 weeks
253-.13058 -.3447 (253*2π)/19348 weeks
254-.20669 -.22319 (254*2π)/19348 weeks
255-.1272 -.23771 (255*2π)/19348 weeks
256-.17627 -.21453 (256*2π)/19348 weeks
257-.08483 -.2653 (257*2π)/19348 weeks
258-.23313 -.25114 (258*2π)/19347 weeks
259-.14727 -.13676 (259*2π)/19347 weeks
260-.15052 -.21987 (260*2π)/19347 weeks
261-.15813 -.17102 (261*2π)/19347 weeks
262-.0966 -.17025 (262*2π)/19347 weeks
263-.10222 -.27398 (263*2π)/19347 weeks
264-.22092 -.15916 (264*2π)/19347 weeks
265-.14958 -.03265 (265*2π)/19347 weeks
266.06346 -.10511 (266*2π)/19347 weeks
267.00176 -.34208 (267*2π)/19347 weeks
268-.12007 -.26523 (268*2π)/19347 weeks
269-.15625 -.24794 (269*2π)/19347 weeks
270-.16417 -.12724 (270*2π)/19347 weeks
271-.0654 -.14985 (271*2π)/19347 weeks
272-.08144 -.15785 (272*2π)/19347 weeks
273.05793 -.17713 (273*2π)/19347 weeks
274-.0211 -.36815 (274*2π)/19347 weeks
275-.18187 -.29377 (275*2π)/19347 weeks
276-.2199 -.21836 (276*2π)/19347 weeks
277-.14523 -.11059 (277*2π)/19347 weeks
278.01861 -.17723 (278*2π)/19347 weeks
279-.0968 -.31241 (279*2π)/19347 weeks
280-.17679 -.17483 (280*2π)/19347 weeks
281-.0986 -.15803 (281*2π)/19347 weeks
282-.06614 -.18766 (282*2π)/19347 weeks
283-.04838 -.25825 (283*2π)/19347 weeks
284-.16383 -.27291 (284*2π)/19347 weeks
285-.20005 -.1328 (285*2π)/19347 weeks
286-.06758 -.13409 (286*2π)/19347 weeks
287-.08433 -.2253 (287*2π)/19347 weeks
288-.09261 -.16607 (288*2π)/19347 weeks
289-.08171 -.22357 (289*2π)/19347 weeks
290-.14577 -.22185 (290*2π)/19347 weeks
291-.15129 -.13588 (291*2π)/19347 weeks
292-.049 -.15194 (292*2π)/19347 weeks
293-.01653 -.22868 (293*2π)/19347 weeks
294-.16237 -.25529 (294*2π)/19347 weeks
295-.14013 -.09733 (295*2π)/19347 weeks
296-.04577 -.15014 (296*2π)/19347 weeks
297-.06714 -.2818 (297*2π)/19347 weeks
298-.17972 -.17302 (298*2π)/19346 weeks
299-.14094 -.11523 (299*2π)/19346 weeks
300-.00208 -.08604 (300*2π)/19346 weeks
301-.01543 -.27915 (301*2π)/19346 weeks
302-.14847 -.2399 (302*2π)/19346 weeks
303-.14653 -.11686 (303*2π)/19346 weeks
304-.03775 -.13268 (304*2π)/19346 weeks
305-.01374 -.17625 (305*2π)/19346 weeks
306-.06545 -.3062 (306*2π)/19346 weeks
307-.2062 -.21491 (307*2π)/19346 weeks
308-.10595 -.04595 (308*2π)/19346 weeks
309.0233 -.17512 (309*2π)/19346 weeks
310-.07557 -.20866 (310*2π)/19346 weeks
311-.04205 -.21677 (311*2π)/19346 weeks
312-.09133 -.2404 (312*2π)/19346 weeks
313-.0787 -.20831 (313*2π)/19346 weeks
314-.07378 -.23192 (314*2π)/19346 weeks
315-.12089 -.23011 (315*2π)/19346 weeks
316-.06391 -.18603 (316*2π)/19346 weeks
317-.12157 -.26914 (317*2π)/19346 weeks
318-.16047 -.15537 (318*2π)/19346 weeks
319-.08466 -.21922 (319*2π)/19346 weeks
320-.10184 -.18416 (320*2π)/19346 weeks
321-.07515 -.21578 (321*2π)/19346 weeks
322-.15122 -.22357 (322*2π)/19346 weeks
323-.13364 -.13459 (323*2π)/19346 weeks
324-.04147 -.2126 (324*2π)/19346 weeks
325-.15124 -.28433 (325*2π)/19346 weeks
326-.18421 -.21045 (326*2π)/19346 weeks
327-.20366 -.14508 (327*2π)/19346 weeks
328-.15551 -.06673 (328*2π)/19346 weeks
329-.07795 -.12572 (329*2π)/19346 weeks
330-.09237 -.19121 (330*2π)/19346 weeks
331-.16268 -.18214 (331*2π)/19346 weeks
332-.12968 -.07333 (332*2π)/19346 weeks
333-.05402 -.11543 (333*2π)/19346 weeks
334-.15907 -.1756 (334*2π)/19346 weeks
335-.05555 -.05177 (335*2π)/19346 weeks
336.02708 -.23162 (336*2π)/19346 weeks
337-.12842 -.21841 (337*2π)/19346 weeks
338-.0923 -.14773 (338*2π)/19346 weeks
339-.12178 -.24064 (339*2π)/19346 weeks
340-.19815 -.15897 (340*2π)/19346 weeks
341-.12727 -.13185 (341*2π)/19346 weeks
342-.16083 -.06719 (342*2π)/19346 weeks
343-.00479 -.02727 (343*2π)/19346 weeks
344.0124 -.26263 (344*2π)/19346 weeks
345-.20283 -.24763 (345*2π)/19346 weeks
346-.14784 -.02471 (346*2π)/19346 weeks
347-.00032 -.11322 (347*2π)/19346 weeks
348-.05567 -.22563 (348*2π)/19346 weeks
349-.16291 -.21224 (349*2π)/19346 weeks
350-.17065 -.09816 (350*2π)/19346 weeks
351-.05889 -.02408 (351*2π)/19346 weeks
352.03355 -.13488 (352*2π)/19345 weeks
353-.07215 -.21018 (353*2π)/19345 weeks
354-.10917 -.12522 (354*2π)/19345 weeks
355-.00031 -.14569 (355*2π)/19345 weeks
356-.04263 -.2146 (356*2π)/19345 weeks
357-.09582 -.16565 (357*2π)/19345 weeks
358-.03769 -.15194 (358*2π)/19345 weeks
359-.01958 -.20226 (359*2π)/19345 weeks
360-.05195 -.23351 (360*2π)/19345 weeks
361-.08974 -.26776 (361*2π)/19345 weeks
362-.16882 -.22245 (362*2π)/19345 weeks
363-.1432 -.16578 (363*2π)/19345 weeks
364-.10402 -.11941 (364*2π)/19345 weeks
365-.07199 -.19595 (365*2π)/19345 weeks
366-.12013 -.20827