Back to list of Stocks    See Also: Seasonal Analysis of BAXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of BAX (Baxter International Inc. Commo)


BAX (Baxter International Inc. Commo) appears to have interesting cyclic behaviour every 154 weeks (1.9764*sine), 184 weeks (1.7529*sine), and 168 weeks (.6573*sine).

BAX (Baxter International Inc. Commo) has an average price of 14.24 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 10/27/1981 to 3/13/2017 for BAX (Baxter International Inc. Commo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.23787   0 
14.42473 -12.5116 (1*2π)/18431,843 weeks
22.37524 -6.09065 (2*2π)/1843922 weeks
3.08887 -4.36317 (3*2π)/1843614 weeks
41.85085 -3.08189 (4*2π)/1843461 weeks
5-.2257 -4.08079 (5*2π)/1843369 weeks
6-.92194 -1.4585 (6*2π)/1843307 weeks
7.95252 -1.41017 (7*2π)/1843263 weeks
8.00135 -1.2225 (8*2π)/1843230 weeks
9.78775 -1.52423 (9*2π)/1843205 weeks
10-.22401 -1.7529 (10*2π)/1843184 weeks
11.51238 -.65729 (11*2π)/1843168 weeks
12.46049 -1.9764 (12*2π)/1843154 weeks
13-.11736 -1.0516 (13*2π)/1843142 weeks
14.33261 -1.27719 (14*2π)/1843132 weeks
15-.15412 -1.11209 (15*2π)/1843123 weeks
16.26358 -1.00465 (16*2π)/1843115 weeks
17-.07184 -1.14881 (17*2π)/1843108 weeks
18.21351 -.79399 (18*2π)/1843102 weeks
19.27294 -1.09575 (19*2π)/184397 weeks
20-.16791 -1.12679 (20*2π)/184392 weeks
21-.11979 -.89897 (21*2π)/184388 weeks
22-.44283 -.97706 (22*2π)/184384 weeks
23-.28523 -.1013 (23*2π)/184380 weeks
24.26221 -.54814 (24*2π)/184377 weeks
25.08491 -.67765 (25*2π)/184374 weeks
26-.07962 -.78929 (26*2π)/184371 weeks
27-.32117 -.49218 (27*2π)/184368 weeks
28.06035 -.32457 (28*2π)/184366 weeks
29.01222 -.63548 (29*2π)/184364 weeks
30-.08061 -.59842 (30*2π)/184361 weeks
31-.21273 -.61962 (31*2π)/184359 weeks
32-.25194 -.26864 (32*2π)/184358 weeks
33-.0326 -.2914 (33*2π)/184356 weeks
34-.01273 -.34593 (34*2π)/184354 weeks
35-.03682 -.27807 (35*2π)/184353 weeks
36-.00411 -.37966 (36*2π)/184351 weeks
37-.00412 -.28285 (37*2π)/184350 weeks
38.07726 -.36029 (38*2π)/184349 weeks
39-.00619 -.31097 (39*2π)/184347 weeks
40.10195 -.27421 (40*2π)/184346 weeks
41.05417 -.39323 (41*2π)/184345 weeks
42.0198 -.23329 (42*2π)/184344 weeks
43.07503 -.39876 (43*2π)/184343 weeks
44-.05041 -.22937 (44*2π)/184342 weeks
45.14201 -.40899 (45*2π)/184341 weeks
46-.15511 -.30474 (46*2π)/184340 weeks
47.07444 -.28896 (47*2π)/184339 weeks
48-.08264 -.2252 (48*2π)/184338 weeks
49.18334 -.15227 (49*2π)/184338 weeks
50.22332 -.45311 (50*2π)/184337 weeks
51-.12744 -.47567 (51*2π)/184336 weeks
52-.08116 -.31274 (52*2π)/184335 weeks
53-.12497 -.24543 (53*2π)/184335 weeks
54.04809 -.13945 (54*2π)/184334 weeks
55.04647 -.31807 (55*2π)/184334 weeks
56-.02222 -.22453 (56*2π)/184333 weeks
57.11462 -.27392 (57*2π)/184332 weeks
58-.11151 -.39718 (58*2π)/184332 weeks
59-.1142 -.15547 (59*2π)/184331 weeks
60.00992 -.16558 (60*2π)/184331 weeks
61.15891 -.17773 (61*2π)/184330 weeks
62.02082 -.35436 (62*2π)/184330 weeks
63-.07889 -.21925 (63*2π)/184329 weeks
64.07152 -.11847 (64*2π)/184329 weeks
65.09851 -.27756 (65*2π)/184328 weeks
66.04183 -.3147 (66*2π)/184328 weeks
67-.01019 -.33041 (67*2π)/184328 weeks
68-.08328 -.19488 (68*2π)/184327 weeks
69.00884 -.17094 (69*2π)/184327 weeks
70.11022 -.21629 (70*2π)/184326 weeks
71-.03933 -.3438 (71*2π)/184326 weeks
72-.06016 -.26007 (72*2π)/184326 weeks
73-.08438 -.22201 (73*2π)/184325 weeks
74-.00141 -.11136 (74*2π)/184325 weeks
75.00466 -.17788 (75*2π)/184325 weeks
76-.01271 -.18357 (76*2π)/184324 weeks
77.03875 -.1095 (77*2π)/184324 weeks
78.10786 -.20519 (78*2π)/184324 weeks
79.08134 -.25102 (79*2π)/184323 weeks
80.02668 -.25951 (80*2π)/184323 weeks
81-.08878 -.22698 (81*2π)/184323 weeks
82.00982 -.14153 (82*2π)/184322 weeks
83.04988 -.19084 (83*2π)/184322 weeks
84.02553 -.21579 (84*2π)/184322 weeks
85.02504 -.22344 (85*2π)/184322 weeks
86.03908 -.22908 (86*2π)/184321 weeks
87.01148 -.25018 (87*2π)/184321 weeks
88-.06118 -.27674 (88*2π)/184321 weeks
89-.10489 -.14306 (89*2π)/184321 weeks
90.05602 -.15401 (90*2π)/184320 weeks
91.01752 -.22488 (91*2π)/184320 weeks
92-.00096 -.27426 (92*2π)/184320 weeks
93-.10254 -.23902 (93*2π)/184320 weeks
94-.07721 -.17766 (94*2π)/184320 weeks
95-.06137 -.17094 (95*2π)/184319 weeks
96-.05282 -.11404 (96*2π)/184319 weeks
97-.00495 -.16875 (97*2π)/184319 weeks
98-.00037 -.1637 (98*2π)/184319 weeks
99-.0226 -.1714 (99*2π)/184319 weeks
100.00944 -.17281 (100*2π)/184318 weeks
101-.10489 -.23578 (101*2π)/184318 weeks
102-.04491 -.1259 (102*2π)/184318 weeks
103-.12951 -.09921 (103*2π)/184318 weeks
104.01614 -.02925 (104*2π)/184318 weeks
105.03553 -.13852 (105*2π)/184318 weeks
106-.00252 -.07523 (106*2π)/184317 weeks
107.10544 -.11594 (107*2π)/184317 weeks
108.02243 -.21518 (108*2π)/184317 weeks
109.03684 -.14443 (109*2π)/184317 weeks
110.02737 -.17037 (110*2π)/184317 weeks
111.05156 -.18836 (111*2π)/184317 weeks
112.06294 -.22928 (112*2π)/184316 weeks
113-.02167 -.28511 (113*2π)/184316 weeks
114-.07604 -.20978 (114*2π)/184316 weeks
115-.0595 -.15937 (115*2π)/184316 weeks
116-.00233 -.14503 (116*2π)/184316 weeks
117-.04308 -.21469 (117*2π)/184316 weeks
118-.06539 -.20112 (118*2π)/184316 weeks
119-.08652 -.16529 (119*2π)/184315 weeks
120-.12055 -.12173 (120*2π)/184315 weeks
121-.03023 -.09007 (121*2π)/184315 weeks
122-.02962 -.12733 (122*2π)/184315 weeks
123.00445 -.15694 (123*2π)/184315 weeks
124-.09826 -.17879 (124*2π)/184315 weeks
125-.06404 -.07482 (125*2π)/184315 weeks
126-.01788 -.12734 (126*2π)/184315 weeks
127-.00907 -.10612 (127*2π)/184315 weeks
128.01888 -.16704 (128*2π)/184314 weeks
129-.08906 -.12868 (129*2π)/184314 weeks
130.00724 -.06739 (130*2π)/184314 weeks
131.03628 -.15814 (131*2π)/184314 weeks
132-.02052 -.18232 (132*2π)/184314 weeks
133-.06763 -.1564 (133*2π)/184314 weeks
134-.063 -.10944 (134*2π)/184314 weeks
135-.02575 -.12418 (135*2π)/184314 weeks
136-.02091 -.10992 (136*2π)/184314 weeks
137-.05294 -.16631 (137*2π)/184313 weeks
138-.03059 -.10863 (138*2π)/184313 weeks
139-.04956 -.19594 (139*2π)/184313 weeks
140-.13073 -.11831 (140*2π)/184313 weeks
141-.04899 -.0733 (141*2π)/184313 weeks
142-.06247 -.06727 (142*2π)/184313 weeks
143.02354 -.11367 (143*2π)/184313 weeks
144-.08405 -.16207 (144*2π)/184313 weeks
145-.08419 -.08063 (145*2π)/184313 weeks
146-.03984 -.05612 (146*2π)/184313 weeks
147-.02856 -.08756 (147*2π)/184313 weeks
148-.01445 -.09596 (148*2π)/184312 weeks
149-.07788 -.10362 (149*2π)/184312 weeks
150-.00092 -.03535 (150*2π)/184312 weeks
151-.02404 -.10569 (151*2π)/184312 weeks
152-.01798 -.04652 (152*2π)/184312 weeks
153.01176 -.14123 (153*2π)/184312 weeks
154-.07596 -.07039 (154*2π)/184312 weeks
155.0101 -.05515 (155*2π)/184312 weeks
156.02289 -.08816 (156*2π)/184312 weeks
157.02209 -.10339 (157*2π)/184312 weeks
158-.01029 -.12059 (158*2π)/184312 weeks
159-.05681 -.1079 (159*2π)/184312 weeks
160.00528 -.06256 (160*2π)/184312 weeks
161.00116 -.13514 (161*2π)/184311 weeks
162-.03966 -.10745 (162*2π)/184311 weeks
163.00685 -.11784 (163*2π)/184311 weeks
164-.06138 -.11334 (164*2π)/184311 weeks
165-.02251 -.07986 (165*2π)/184311 weeks
166-.02114 -.07763 (166*2π)/184311 weeks
167.00146 -.10566 (167*2π)/184311 weeks
168-.02661 -.09349 (168*2π)/184311 weeks
169-.00764 -.09562 (169*2π)/184311 weeks
170-.00625 -.099 (170*2π)/184311 weeks
171-.03352 -.14397 (171*2π)/184311 weeks
172-.04678 -.06214 (172*2π)/184311 weeks
173-.01836 -.10829 (173*2π)/184311 weeks
174-.02716 -.08781 (174*2π)/184311 weeks
175-.01462 -.11305 (175*2π)/184311 weeks
176-.04999 -.10381 (176*2π)/184310 weeks
177-.0569 -.07971 (177*2π)/184310 weeks
178.0023 -.07177 (178*2π)/184310 weeks
179-.03049 -.0934 (179*2π)/184310 weeks
180-.02434 -.0801 (180*2π)/184310 weeks
181-.00365 -.07536 (181*2π)/184310 weeks
182-.00509 -.10848 (182*2π)/184310 weeks
183-.02188 -.11768 (183*2π)/184310 weeks
184-.06427 -.09715 (184*2π)/184310 weeks
185-.03338 -.07118 (185*2π)/184310 weeks
186-.00952 -.09154 (186*2π)/184310 weeks
187-.01699 -.12327 (187*2π)/184310 weeks
188-.0547 -.11186 (188*2π)/184310 weeks
189-.06005 -.09097 (189*2π)/184310 weeks
190-.08219 -.07158 (190*2π)/184310 weeks
191-.05326 -.05059 (191*2π)/184310 weeks
192-.01744 -.0588 (192*2π)/184310 weeks
193-.02277 -.06251 (193*2π)/184310 weeks
194-.0321 -.09908 (194*2π)/184310 weeks
195-.05913 -.05681 (195*2π)/18439 weeks
196-.02331 -.03472 (196*2π)/18439 weeks
197-.0115 -.04686 (197*2π)/18439 weeks
198-.01085 -.07517 (198*2π)/18439 weeks
199.01372 -.06015 (199*2π)/18439 weeks
200-.01923 -.11147 (200*2π)/18439 weeks
201-.03953 -.06444 (201*2π)/18439 weeks
202-.00954 -.05498 (202*2π)/18439 weeks
203.00908 -.07412 (203*2π)/18439 weeks
204-.00028 -.09877 (204*2π)/18439 weeks
205-.01886 -.10568 (205*2π)/18439 weeks
206-.03523 -.11703 (206*2π)/18439 weeks
207-.06479 -.08157 (207*2π)/18439 weeks
208-.02764 -.0583 (208*2π)/18439 weeks
209-.05111 -.08827 (209*2π)/18439 weeks
210-.021 -.04331 (210*2π)/18439 weeks
211-.0116 -.08384 (211*2π)/18439 weeks
212-.00599 -.07649 (212*2π)/18439 weeks
213-.03641 -.11232 (213*2π)/18439 weeks
214-.03382 -.09066 (214*2π)/18439 weeks
215-.06922 -.09066 (215*2π)/18439 weeks
216-.04506 -.06199 (216*2π)/18439 weeks
217-.06133 -.03876 (217*2π)/18438 weeks
218-.01627 -.05085 (218*2π)/18438 weeks
219-.0301 -.03129 (219*2π)/18438 weeks
220.00287 -.06776 (220*2π)/18438 weeks
221-.0256 -.05157 (221*2π)/18438 weeks
222.01026 -.06589 (222*2π)/18438 weeks
223-.02402 -.08567 (223*2π)/18438 weeks
224-.01413 -.06858 (224*2π)/18438 weeks
225-.0343 -.0747 (225*2π)/18438 weeks
226-.03183 -.05617 (226*2π)/18438 weeks
227-.01765 -.06275 (227*2π)/18438 weeks
228-.02609 -.05167 (228*2π)/18438 weeks
229.01387 -.08023 (229*2π)/18438 weeks
230-.03192 -.07114 (230*2π)/18438 weeks
231-.01104 -.07948 (231*2π)/18438 weeks
232-.04633 -.0673 (232*2π)/18438 weeks
233-.02057 -.05735 (233*2π)/18438 weeks
234-.01821 -.06597 (234*2π)/18438 weeks
235-.02483 -.05785 (235*2π)/18438 weeks
236-.00752 -.05749 (236*2π)/18438 weeks
237-.01033 -.08159 (237*2π)/18438 weeks
238-.02923 -.05903 (238*2π)/18438 weeks
239-.01382 -.06818 (239*2π)/18438 weeks
240.00286 -.06858 (240*2π)/18438 weeks
241-.00904 -.09722 (241*2π)/18438 weeks
242-.02187 -.09716 (242*2π)/18438 weeks
243-.0313 -.075 (243*2π)/18438 weeks
244-.03216 -.10264 (244*2π)/18438 weeks
245-.04993 -.08847 (245*2π)/18438 weeks
246-.05437 -.07457 (246*2π)/18437 weeks
247-.05072 -.0563 (247*2π)/18437 weeks
248-.04568 -.04484 (248*2π)/18437 weeks
249.0103 -.05791 (249*2π)/18437 weeks
250-.05143 -.09282 (250*2π)/18437 weeks
251-.04519 -.0559 (251*2π)/18437 weeks
252-.03255 -.08016 (252*2π)/18437 weeks
253-.05116 -.04013 (253*2π)/18437 weeks
254-.01528 -.05826 (254*2π)/18437 weeks
255-.04322 -.07022 (255*2π)/18437 weeks
256-.03585 -.05443 (256*2π)/18437 weeks
257-.0605 -.06618 (257*2π)/18437 weeks
258-.0378 -.0366 (258*2π)/18437 weeks
259-.02902 -.06151 (259*2π)/18437 weeks
260-.03571 -.01483 (260*2π)/18437 weeks
261.01861 -.04478 (261*2π)/18437 weeks
262.00405 -.10033 (262*2π)/18437 weeks
263-.06049 -.09145 (263*2π)/18437 weeks
264-.03997 -.06462 (264*2π)/18437 weeks
265-.03836 -.04216 (265*2π)/18437 weeks
266.00621 -.05556 (266*2π)/18437 weeks
267-.05124 -.10171 (267*2π)/18437 weeks
268-.06638 -.04365 (268*2π)/18437 weeks
269-.01983 -.0628 (269*2π)/18437 weeks
270-.057 -.07444 (270*2π)/18437 weeks
271-.05157 -.0428 (271*2π)/18437 weeks
272-.05781 -.03987 (272*2π)/18437 weeks
273-.04561 -.00507 (273*2π)/18437 weeks
274.00706 -.02201 (274*2π)/18437 weeks
275-.03037 -.0636 (275*2π)/18437 weeks
276-.03273 -.03317 (276*2π)/18437 weeks
277-.0407 -.04878 (277*2π)/18437 weeks
278-.01193 -.01573 (278*2π)/18437 weeks
279-.0166 -.06091 (279*2π)/18437 weeks
280-.03557 -.03566 (280*2π)/18437 weeks
281-.01898 -.02038 (281*2π)/18437 weeks
282.00126 -.0321 (282*2π)/18437 weeks
283-.00354 -.04491 (283*2π)/18437 weeks
284.008 -.06405 (284*2π)/18436 weeks
285-.00945 -.05687 (285*2π)/18436 weeks
286.00079 -.06958 (286*2π)/18436 weeks
287-.02348 -.06971 (287*2π)/18436 weeks
288-.01286 -.0711 (288*2π)/18436 weeks
289-.02854 -.07318 (289*2π)/18436 weeks
290-.04063 -.06908 (290*2π)/18436 weeks
291-.03261 -.05484 (291*2π)/18436 weeks
292-.02863 -.07274 (292*2π)/18436 weeks
293-.08265 -.06605 (293*2π)/18436 weeks
294-.04204 -.02258 (294*2π)/18436 weeks
295-.04165 -.03694 (295*2π)/18436 weeks
296-.01742 -.04521 (296*2π)/18436 weeks
297-.03735 -.04888 (297*2π)/18436 weeks
298-.04153 -.02209 (298*2π)/18436 weeks
299-.01993 -.01734 (299*2π)/18436 weeks
300.01621 -.04661 (300*2π)/18436 weeks
301-.02382 -.06076 (301*2π)/18436 weeks
302-.02493 -.05279 (302*2π)/18436 weeks
303-.031 -.02133 (303*2π)/18436 weeks
304.00899 -.05395 (304*2π)/18436 weeks
305-.03274 -.05305 (305*2π)/18436 weeks
306-.00823 -.05867 (306*2π)/18436 weeks
307-.03866 -.04685 (307*2π)/18436 weeks
308-.00728 -.04259 (308*2π)/18436 weeks
309-.01461 -.06554 (309*2π)/18436 weeks
310-.02299 -.05037 (310*2π)/18436 weeks
311-.0188 -.06516 (311*2π)/18436 weeks
312-.02716 -.08 (312*2π)/18436 weeks
313-.05161 -.05811 (313*2π)/18436 weeks
314-.04236 -.04922 (314*2π)/18436 weeks
315-.04641 -.03979 (315*2π)/18436 weeks
316-.00483 -.03611 (316*2π)/18436 weeks
317-.05842 -.06201 (317*2π)/18436 weeks
318-.02054 -.02484 (318*2π)/18436 weeks
319-.04011 -.03433 (319*2π)/18436 weeks
320.00894 -.03471 (320*2π)/18436 weeks
321-.0225 -.06604 (321*2π)/18436 weeks
322-.02643 -.06263 (322*2π)/18436 weeks
323-.05553 -.0449 (323*2π)/18436 weeks
324-.02011 -.02812 (324*2π)/18436 weeks
325-.03055 -.04547 (325*2π)/18436 weeks
326-.01846 -.04339 (326*2π)/18436 weeks
327-.03519 -.04236 (327*2π)/18436 weeks
328-.01816 -.02719 (328*2π)/18436 weeks
329-.01614 -.06197 (329*2π)/18436 weeks
330-.02637 -.03626 (330*2π)/18436 weeks
331-.00249 -.05575 (331*2π)/18436 weeks
332-.03952 -.07087 (332*2π)/18436 weeks
333-.03897 -.03944 (333*2π)/18436 weeks
334-.02978 -.05247 (334*2π)/18436 weeks
335-.03804 -.05579 (335*2π)/18436 weeks
336-.05304 -.04812 (336*2π)/18435 weeks
337-.04388 -.03452 (337*2π)/18435 weeks
338-.04051 -.02766 (338*2π)/18435 weeks
339-.04538 -.03617 (339*2π)/18435 weeks
340-.05429 -.00396 (340*2π)/18435 weeks
341-.00726 -.01335 (341*2π)/18435 weeks
342-.00519 -.03347 (342*2π)/18435 weeks
343-.00646 -.03992 (343*2π)/18435 weeks
344-.02242 -.04986 (344*2π)/18435 weeks
345-.02375 -.03605 (345*2π)/18435 weeks
346-.01249 -.0571 (346*2π)/18435 weeks
347-.03885 -.04007 (347*2π)/18435 weeks
348-.02569 -.04855 (348*2π)/18435 weeks
349-.02363 -.02551 (349*2π)/18435 weeks
350.00191 -.05424 (350*2π)/18435 weeks
351-.03419 -.07801 (351*2π)/18435 weeks
352-.05532 -.02942 (352*2π)/18435 weeks
353-.01385 -.03451 (353*2π)/18435 weeks
354-.02382 -.03745 (354*2π)/18435 weeks
355-.02257 -.05922 (355*2π)/18435 weeks
356-.04205 -.0306 (356*2π)/18435 weeks
357-.00789 -.04748 (357*2π)/18435 weeks
358-.04951 -.05058 (358*2π)/18435 weeks
359-.03572 -.03286 (359*2π)/18435 weeks
360-.03272 -.02537 (360*2π)/18435 weeks
361-.02648 -.04398 (361*2π)/18435 weeks
362-.02881 -.03615 (362*2π)/18435 weeks
363-.03718 -.04028 (363*2π)/18435 weeks
364-.03077 -.00872 (364*2π)/18435 weeks
365-.01077 -.03628 (365*2π)/18435 weeks
366-.01859 -.0366 (366*2π)/18435 weeks
367-.01518 -.03234 (367*2π)/18435 weeks
368-.0237 -.04942 (368*2π)/18435 weeks
369-.01406 -.02477 (369*2π)/18435 weeks
370-.00211 -.05994 (370*2π)/18435 weeks
371-.03808 -.05327 (371*2π)/18435 weeks
372-.00879 -.05461 (372*2π)/18435 weeks
373-.05004 -.04315 (373*2π)/18435 weeks
374.00049 -.04093 (374*2π)/18435 weeks
375-.03586 -.07444 (375*2π)/18435 weeks
376-.03828 -.0495 (376*2π)/18435 weeks
377-.05314 -.0476 (377*2π)/18435 weeks
378-.02741 -.01807 (378*2π)/18435 weeks
379-.02379 -.04402 (379*2π)/18435 weeks
380-.04223 -.04407 (380*2π)/18435 weeks
381-.03837 -.02196 (381*2π)/18435 weeks
382-.0191 -.04267 (382*2π)/18435 weeks
383-.03435 -.03391 (383*2π)/18435 weeks
384-.01531 -.06491 (384*2π)/18435 weeks
385-.07523 -.03189 (385*2π)/18435 weeks
386-.03363 -.02628 (386*2π)/18435 weeks
387-.0475 -.04196 (387*2π)/18435 weeks
388-.04416 -.01266 (388*2π)/18435 weeks
389-.04619 -.04608 (389*2π)/18435 weeks
390-.05135 -.00318 (390*2π)/18435 weeks
391-.0222 .00165 (391*2π)/18435 weeks
392-.00276 -.02229 (392*2π)/18435 weeks
393-.0276 -.03435 (393*2π)/18435 weeks
394-.01785 -.03576 (394*2π)/18435 weeks
395-.0393 -.03109 (395*2π)/18435 weeks
396-.02092 -.03016 (396*2π)/18435 weeks
397-.03721 -.02642 (397*2π)/18435 weeks
398-.03535 -.01728 (398*2π)/18435 weeks
399-.01412 -.00869 (399*2π)/18435 weeks
400-.01176 -.01514 (400*2π)/18435 weeks
401.00468 -.01543 (401*2π)/18435 weeks
402-.00064 -.04822 (402*2π)/18435 weeks
403-.01045 -.034 (403*2π)/18435 weeks
404-.01125 -.05049 (404*2π)/18435 weeks
405-.00685 -.04543 (405*2π)/18435 weeks
406-.02451 -.05074 (406*2π)/18435 weeks
407-.03139