Back to list of Stocks    See Also: Seasonal Analysis of BAXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of BAX (Baxter International Inc. Commo)


BAX (Baxter International Inc. Commo) appears to have interesting cyclic behaviour every 153 weeks (1.8008*sine), 183 weeks (1.7481*sine), and 153 weeks (.5872*cosine).

BAX (Baxter International Inc. Commo) has an average price of 14.1 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 10/27/1981 to 1/9/2017 for BAX (Baxter International Inc. Commo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.10112   0 
14.30482 -12.41141 (1*2π)/18341,834 weeks
22.28907 -5.99165 (2*2π)/1834917 weeks
3.01126 -4.33373 (3*2π)/1834611 weeks
41.78907 -2.92703 (4*2π)/1834459 weeks
5-.12803 -4.10061 (5*2π)/1834367 weeks
6-1.07249 -1.58028 (6*2π)/1834306 weeks
7.80271 -1.29631 (7*2π)/1834262 weeks
8-.12795 -1.17493 (8*2π)/1834229 weeks
9.72968 -1.34322 (9*2π)/1834204 weeks
10-.21019 -1.74812 (10*2π)/1834183 weeks
11.33491 -.50789 (11*2π)/1834167 weeks
12.58718 -1.80084 (12*2π)/1834153 weeks
13-.13395 -1.04195 (13*2π)/1834141 weeks
14.3671 -1.15275 (14*2π)/1834131 weeks
15-.12721 -1.10983 (15*2π)/1834122 weeks
16.26297 -.89596 (16*2π)/1834115 weeks
17-.00251 -1.12944 (17*2π)/1834108 weeks
18.1842 -.70111 (18*2π)/1834102 weeks
19.39198 -.94005 (19*2π)/183497 weeks
20.02839 -1.13822 (20*2π)/183492 weeks
21.01884 -.94148 (21*2π)/183487 weeks
22-.26383 -1.1961 (22*2π)/183483 weeks
23-.5018 -.31727 (23*2π)/183480 weeks
24.15317 -.44045 (24*2π)/183476 weeks
25.11691 -.59736 (25*2π)/183473 weeks
26.05966 -.79943 (26*2π)/183471 weeks
27-.30647 -.67613 (27*2π)/183468 weeks
28-.06966 -.32659 (28*2π)/183466 weeks
29.05697 -.58686 (29*2π)/183463 weeks
30.00324 -.61782 (30*2π)/183461 weeks
31-.08129 -.7545 (31*2π)/183459 weeks
32-.31911 -.50107 (32*2π)/183457 weeks
33-.15993 -.38781 (33*2π)/183456 weeks
34-.10248 -.40537 (34*2π)/183454 weeks
35-.15991 -.34347 (35*2π)/183452 weeks
36-.0803 -.41106 (36*2π)/183451 weeks
37-.13428 -.32959 (37*2π)/183450 weeks
38-.01408 -.33674 (38*2π)/183448 weeks
39-.10091 -.34678 (39*2π)/183447 weeks
40-.03965 -.23293 (40*2π)/183446 weeks
41.02097 -.348 (41*2π)/183445 weeks
42-.10379 -.23397 (42*2π)/183444 weeks
43.05559 -.31976 (43*2π)/183443 weeks
44-.15719 -.26663 (44*2π)/183442 weeks
45.12659 -.26174 (45*2π)/183441 weeks
46-.14688 -.4016 (46*2π)/183440 weeks
47-.00157 -.26181 (47*2π)/183439 weeks
48-.1809 -.33007 (48*2π)/183438 weeks
49-.10181 -.0473 (49*2π)/183437 weeks
50.20521 -.12462 (50*2π)/183437 weeks
51.07033 -.42165 (51*2π)/183436 weeks
52-.00197 -.35537 (52*2π)/183435 weeks
53-.11113 -.38747 (53*2π)/183435 weeks
54-.12765 -.17255 (54*2π)/183434 weeks
55.01317 -.24758 (55*2π)/183433 weeks
56-.0965 -.24722 (56*2π)/183433 weeks
57.03401 -.12134 (57*2π)/183432 weeks
58.05809 -.38815 (58*2π)/183432 weeks
59-.14643 -.32915 (59*2π)/183431 weeks
60-.14034 -.25549 (60*2π)/183431 weeks
61-.06138 -.06735 (61*2π)/183430 weeks
62.06083 -.23242 (62*2π)/183430 weeks
63-.07776 -.30835 (63*2π)/183429 weeks
64-.14598 -.12803 (64*2π)/183429 weeks
65-.01941 -.12243 (65*2π)/183428 weeks
66.02822 -.16067 (66*2π)/183428 weeks
67.08276 -.22608 (67*2π)/183427 weeks
68-.05873 -.26873 (68*2π)/183427 weeks
69-.09589 -.20298 (69*2π)/183427 weeks
70-.03129 -.06169 (70*2π)/183426 weeks
71.06011 -.21412 (71*2π)/183426 weeks
72.03076 -.23928 (72*2π)/183425 weeks
73.00451 -.3023 (73*2π)/183425 weeks
74-.08859 -.20194 (74*2π)/183425 weeks
75-.05956 -.19954 (75*2π)/183424 weeks
76-.05528 -.23809 (76*2π)/183424 weeks
77-.14757 -.17639 (77*2π)/183424 weeks
78-.07642 -.10486 (78*2π)/183424 weeks
79-.01618 -.087 (79*2π)/183423 weeks
80.02629 -.09667 (80*2π)/183423 weeks
81-.00551 -.2371 (81*2π)/183423 weeks
82-.08387 -.17232 (82*2π)/183422 weeks
83-.06227 -.12292 (83*2π)/183422 weeks
84-.04786 -.12882 (84*2π)/183422 weeks
85-.03857 -.1255 (85*2π)/183422 weeks
86-.02617 -.08892 (86*2π)/183421 weeks
87.00232 -.07407 (87*2π)/183421 weeks
88.07884 -.14425 (88*2π)/183421 weeks
89-.04707 -.24127 (89*2π)/183421 weeks
90-.07397 -.10462 (90*2π)/183420 weeks
91-.04265 -.09009 (91*2π)/183420 weeks
92.04005 -.06294 (92*2π)/183420 weeks
93.05574 -.15776 (93*2π)/183420 weeks
94.02252 -.17115 (94*2π)/183420 weeks
95.02995 -.17949 (95*2π)/183419 weeks
96-.0483 -.19328 (96*2π)/183419 weeks
97-.02175 -.16049 (97*2π)/183419 weeks
98-.02504 -.13292 (98*2π)/183419 weeks
99-.02225 -.14637 (99*2π)/183419 weeks
100-.03396 -.06792 (100*2π)/183418 weeks
101.07752 -.17399 (101*2π)/183418 weeks
102.03813 -.12969 (102*2π)/183418 weeks
103.03053 -.27551 (103*2π)/183418 weeks
104-.09535 -.2132 (104*2π)/183418 weeks
105-.02704 -.1647 (105*2π)/183417 weeks
106-.09606 -.23029 (106*2π)/183417 weeks
107-.14594 -.11118 (107*2π)/183417 weeks
108-.04316 -.13374 (108*2π)/183417 weeks
109-.09022 -.12295 (109*2π)/183417 weeks
110-.0948 -.13193 (110*2π)/183417 weeks
111-.11017 -.10497 (111*2π)/183417 weeks
112-.10967 -.02494 (112*2π)/183416 weeks
113-.00339 -.01688 (113*2π)/183416 weeks
114.01776 -.07286 (114*2π)/183416 weeks
115-.00298 -.11397 (115*2π)/183416 weeks
116-.0714 -.06812 (116*2π)/183416 weeks
117-.02109 -.05491 (117*2π)/183416 weeks
118.01499 -.05022 (118*2π)/183416 weeks
119.03307 -.05662 (119*2π)/183415 weeks
120.04449 -.14882 (120*2π)/183415 weeks
121-.02113 -.13171 (121*2π)/183415 weeks
122-.03173 -.13726 (122*2π)/183415 weeks
123-.04709 -.05044 (123*2π)/183415 weeks
124.05644 -.09632 (124*2π)/183415 weeks
125-.0125 -.15495 (125*2π)/183415 weeks
126-.00005 -.13307 (126*2π)/183415 weeks
127-.04553 -.14774 (127*2π)/183414 weeks
128-.02542 -.04553 (128*2π)/183414 weeks
129.03945 -.14176 (129*2π)/183414 weeks
130-.06229 -.16218 (130*2π)/183414 weeks
131-.0765 -.08627 (131*2π)/183414 weeks
132-.0424 -.04848 (132*2π)/183414 weeks
133.00057 -.06336 (133*2π)/183414 weeks
134-.0111 -.1084 (134*2π)/183414 weeks
135-.01328 -.0937 (135*2π)/183414 weeks
136-.06747 -.0896 (136*2π)/183413 weeks
137-.00344 -.07873 (137*2π)/183413 weeks
138-.07871 -.09228 (138*2π)/183413 weeks
139-.01818 -.00024 (139*2π)/183413 weeks
140.05025 -.07846 (140*2π)/183413 weeks
141.0159 -.07482 (141*2π)/183413 weeks
142.00595 -.15144 (142*2π)/183413 weeks
143-.07596 -.06463 (143*2π)/183413 weeks
144.01809 -.03946 (144*2π)/183413 weeks
145.04205 -.08148 (145*2π)/183413 weeks
146.0068 -.10731 (146*2π)/183413 weeks
147.00462 -.10823 (147*2π)/183412 weeks
148-.02736 -.06706 (148*2π)/183412 weeks
149.0654 -.0932 (149*2π)/183412 weeks
150-.01874 -.1168 (150*2π)/183412 weeks
151.02658 -.08393 (151*2π)/183412 weeks
152-.02639 -.15577 (152*2π)/183412 weeks
153-.01916 -.04167 (153*2π)/183412 weeks
154.04606 -.11421 (154*2π)/183412 weeks
155.0104 -.13613 (155*2π)/183412 weeks
156-.00866 -.13055 (156*2π)/183412 weeks
157-.04145 -.11007 (157*2π)/183412 weeks
158-.04943 -.07492 (158*2π)/183412 weeks
159.02315 -.09309 (159*2π)/183412 weeks
160-.03793 -.13762 (160*2π)/183411 weeks
161-.04188 -.08381 (161*2π)/183411 weeks
162-.01158 -.11768 (162*2π)/183411 weeks
163-.05799 -.06997 (163*2π)/183411 weeks
164-.00008 -.0745 (164*2π)/183411 weeks
165-.00621 -.08037 (165*2π)/183411 weeks
166-.00816 -.11288 (166*2π)/183411 weeks
167-.02551 -.08353 (167*2π)/183411 weeks
168-.01095 -.09739 (168*2π)/183411 weeks
169-.0178 -.09885 (169*2π)/183411 weeks
170-.0586 -.11442 (170*2π)/183411 weeks
171-.02307 -.04038 (171*2π)/183411 weeks
172-.02241 -.10188 (172*2π)/183411 weeks
173-.0223 -.07694 (173*2π)/183411 weeks
174-.02465 -.10292 (174*2π)/183411 weeks
175-.04924 -.0748 (175*2π)/183410 weeks
176-.03705 -.05558 (176*2π)/183410 weeks
177.01585 -.07689 (177*2π)/183410 weeks
178-.02834 -.08259 (178*2π)/183410 weeks
179-.01497 -.07311 (179*2π)/183410 weeks
180.00208 -.07897 (180*2π)/183410 weeks
181-.01579 -.1073 (181*2π)/183410 weeks
182-.03513 -.10356 (182*2π)/183410 weeks
183-.06272 -.06929 (183*2π)/183410 weeks
184-.02137 -.05938 (184*2π)/183410 weeks
185-.00883 -.08844 (185*2π)/183410 weeks
186-.02841 -.11215 (186*2π)/183410 weeks
187-.05987 -.08648 (187*2π)/183410 weeks
188-.05621 -.06479 (188*2π)/183410 weeks
189-.06922 -.04346 (189*2π)/183410 weeks
190-.03358 -.03382 (190*2π)/183410 weeks
191-.00295 -.05183 (191*2π)/183410 weeks
192-.01259 -.05527 (192*2π)/183410 weeks
193-.02892 -.08775 (193*2π)/183410 weeks
194-.04705 -.04046 (194*2π)/18349 weeks
195-.00794 -.02665 (195*2π)/18349 weeks
196-.00001 -.04229 (196*2π)/18349 weeks
197-.00367 -.07017 (197*2π)/18349 weeks
198.02065 -.05687 (198*2π)/18349 weeks
199-.01737 -.10412 (199*2π)/18349 weeks
200-.03351 -.05469 (200*2π)/18349 weeks
201-.0029 -.04744 (201*2π)/18349 weeks
202.01438 -.06707 (202*2π)/18349 weeks
203.00442 -.09081 (203*2π)/18349 weeks
204-.01364 -.09714 (204*2π)/18349 weeks
205-.02907 -.10899 (205*2π)/18349 weeks
206-.0596 -.07501 (206*2π)/18349 weeks
207-.02362 -.05006 (207*2π)/18349 weeks
208-.04581 -.08187 (208*2π)/18349 weeks
209-.01967 -.03425 (209*2π)/18349 weeks
210-.00625 -.07279 (210*2π)/18349 weeks
211.00033 -.06431 (211*2π)/18349 weeks
212-.02442 -.10464 (212*2π)/18349 weeks
213-.02372 -.08507 (213*2π)/18349 weeks
214-.05975 -.09279 (214*2π)/18349 weeks
215-.0423 -.06262 (215*2π)/18349 weeks
216-.06564 -.04179 (216*2π)/18348 weeks
217-.02072 -.04378 (217*2π)/18348 weeks
218-.03922 -.02483 (218*2π)/18348 weeks
219.00187 -.05124 (219*2π)/18348 weeks
220-.02924 -.04191 (220*2π)/18348 weeks
221.01022 -.04405 (221*2π)/18348 weeks
222-.01449 -.07338 (222*2π)/18348 weeks
223-.00903 -.05583 (223*2π)/18348 weeks
224-.02631 -.06869 (224*2π)/18348 weeks
225-.03274 -.05123 (225*2π)/18348 weeks
226-.01829 -.05165 (226*2π)/18348 weeks
227-.03272 -.04192 (227*2π)/18348 weeks
228.01843 -.0519 (228*2π)/18348 weeks
229-.02364 -.06084 (229*2π)/18348 weeks
230-.0001 -.06188 (230*2π)/18348 weeks
231-.0379 -.06755 (231*2π)/18348 weeks
232-.02316 -.04811 (232*2π)/18348 weeks
233-.01644 -.05312 (233*2π)/18348 weeks
234-.02733 -.04853 (234*2π)/18348 weeks
235-.01373 -.03626 (235*2π)/18348 weeks
236-.00031 -.05752 (236*2π)/18348 weeks
237-.02831 -.04815 (237*2π)/18348 weeks
238-.01527 -.04686 (238*2π)/18348 weeks
239.00117 -.03243 (239*2π)/18348 weeks
240.01268 -.05918 (240*2π)/18348 weeks
241.00939 -.07045 (241*2π)/18348 weeks
242-.00982 -.05669 (242*2π)/18348 weeks
243.00792 -.08073 (243*2π)/18348 weeks
244-.00923 -.08696 (244*2π)/18348 weeks
245-.02206 -.08573 (245*2π)/18347 weeks
246-.03482 -.07312 (246*2π)/18347 weeks
247-.04995 -.06133 (247*2π)/18347 weeks
248.00353 -.02249 (248*2π)/18347 weeks
249-.00983 -.0863 (249*2π)/18347 weeks
250-.03209 -.06353 (250*2π)/18347 weeks
251-.00399 -.07589 (251*2π)/18347 weeks
252-.04736 -.06222 (252*2π)/18347 weeks
253-.01369 -.04373 (253*2π)/18347 weeks
254-.01876 -.07016 (254*2π)/18347 weeks
255-.02263 -.055 (255*2π)/18347 weeks
256-.03251 -.08779 (256*2π)/18347 weeks
257-.0462 -.05773 (257*2π)/18347 weeks
258-.02138 -.06943 (258*2π)/18347 weeks
259-.07214 -.04569 (259*2π)/18347 weeks
260-.03066 -.00377 (260*2π)/18347 weeks
261.02322 -.02821 (261*2π)/18347 weeks
262-.00488 -.0842 (262*2π)/18347 weeks
263-.01211 -.07082 (263*2π)/18347 weeks
264-.03943 -.05985 (264*2π)/18347 weeks
265-.00722 -.0113 (265*2π)/18347 weeks
266.01783 -.07827 (266*2π)/18347 weeks
267-.03901 -.07922 (267*2π)/18347 weeks
268-.00478 -.04746 (268*2π)/18347 weeks
269-.00038 -.08555 (269*2π)/18347 weeks
270-.01879 -.07651 (270*2π)/18347 weeks
271-.02556 -.09173 (271*2π)/18347 weeks
272-.06691 -.07755 (272*2π)/18347 weeks
273-.04532 -.02186 (273*2π)/18347 weeks
274-.01665 -.06015 (274*2π)/18347 weeks
275-.03876 -.05336 (275*2π)/18347 weeks
276-.03043 -.07848 (276*2π)/18347 weeks
277-.05719 -.03878 (277*2π)/18347 weeks
278-.01753 -.05084 (278*2π)/18347 weeks
279-.03754 -.06726 (279*2π)/18347 weeks
280-.05835 -.05567 (280*2π)/18347 weeks
281-.05447 -.03487 (281*2π)/18347 weeks
282-.05353 -.03523 (282*2π)/18347 weeks
283-.02884 -.02236 (283*2π)/18346 weeks
284-.03793 -.02918 (284*2π)/18346 weeks
285-.02079 -.01446 (285*2π)/18346 weeks
286-.02216 -.03253 (286*2π)/18346 weeks
287-.01353 -.02016 (287*2π)/18346 weeks
288-.00716 -.02767 (288*2π)/18346 weeks
289-.00533 -.0433 (289*2π)/18346 weeks
290-.01864 -.03537 (290*2π)/18346 weeks
291.00622 -.01835 (291*2π)/18346 weeks
292.01038 -.08361 (292*2π)/18346 weeks
293-.02572 -.06172 (293*2π)/18346 weeks
294-.02955 -.0702 (294*2π)/18346 weeks
295-.01987 -.04488 (295*2π)/18346 weeks
296-.00656 -.05871 (296*2π)/18346 weeks
297-.03049 -.07479 (297*2π)/18346 weeks
298-.05703 -.07161 (298*2π)/18346 weeks
299-.04131 -.02151 (299*2π)/18346 weeks
300-.02305 -.04088 (300*2π)/18346 weeks
301-.01181 -.04533 (301*2π)/18346 weeks
302-.05287 -.06523 (302*2π)/18346 weeks
303-.03466 -.01865 (303*2π)/18346 weeks
304-.03463 -.04985 (304*2π)/18346 weeks
305-.02255 -.02385 (305*2π)/18346 weeks
306-.02879 -.05711 (306*2π)/18346 weeks
307-.04536 -.03492 (307*2π)/18346 weeks
308-.02491 -.02857 (308*2π)/18346 weeks
309-.0393 -.03334 (309*2π)/18346 weeks
310-.03544 -.02321 (310*2π)/18346 weeks
311-.00738 -.01257 (311*2π)/18346 weeks
312-.00633 -.03644 (312*2π)/18346 weeks
313-.00691 -.03872 (313*2π)/18346 weeks
314-.01138 -.06452 (314*2π)/18346 weeks
315-.03573 -.01543 (315*2π)/18346 weeks
316.00608 -.05861 (316*2π)/18346 weeks
317-.02391 -.04045 (317*2π)/18346 weeks
318-.02222 -.07516 (318*2π)/18346 weeks
319-.05163 -.03061 (319*2π)/18346 weeks
320-.02843 -.02941 (320*2π)/18346 weeks
321-.01387 -.01438 (321*2π)/18346 weeks
322-.00251 -.05352 (322*2π)/18346 weeks
323-.02959 -.04081 (323*2π)/18346 weeks
324-.02051 -.04776 (324*2π)/18346 weeks
325-.02407 -.03252 (325*2π)/18346 weeks
326-.01329 -.04832 (326*2π)/18346 weeks
327-.04461 -.05118 (327*2π)/18346 weeks
328-.01916 -.03173 (328*2π)/18346 weeks
329-.03565 -.05329 (329*2π)/18346 weeks
330-.04836 -.01671 (330*2π)/18346 weeks
331-.01289 -.01864 (331*2π)/18346 weeks
332-.02762 -.0346 (332*2π)/18346 weeks
333-.02821 -.02414 (333*2π)/18346 weeks
334-.02017 -.01443 (334*2π)/18345 weeks
335-.00452 -.02565 (335*2π)/18345 weeks
336-.00481 -.02883 (336*2π)/18345 weeks
337-.0141 -.03097 (337*2π)/18345 weeks
338.00702 -.02314 (338*2π)/18345 weeks
339.00413 -.0727 (339*2π)/18345 weeks
340-.02195 -.0669 (340*2π)/18345 weeks
341-.02775 -.0572 (341*2π)/18345 weeks
342-.03867 -.04426 (342*2π)/18345 weeks
343-.02453 -.03917 (343*2π)/18345 weeks
344-.03536 -.055 (344*2π)/18345 weeks
345-.03121 -.02373 (345*2π)/18345 weeks
346-.02689 -.0454 (346*2π)/18345 weeks
347-.01244 -.036 (347*2π)/18345 weeks
348-.02963 -.06665 (348*2π)/18345 weeks
349-.05877 -.03715 (349*2π)/18345 weeks
350-.02086 -.00257 (350*2π)/18345 weeks
351-.00666 -.04757 (351*2π)/18345 weeks
352-.02394 -.03701 (352*2π)/18345 weeks
353-.03583 -.0469 (353*2π)/18345 weeks
354-.0237 -.01614 (354*2π)/18345 weeks
355-.01777 -.05257 (355*2π)/18345 weeks
356-.04504 -.01981 (356*2π)/18345 weeks
357-.01631 -.02368 (357*2π)/18345 weeks
358-.01437 -.02569 (358*2π)/18345 weeks
359-.02413 -.04287 (359*2π)/18345 weeks
360-.01982 -.03201 (360*2π)/18345 weeks
361-.02566 -.0301 (361*2π)/18345 weeks
362-.00173 -.01779 (362*2π)/18345 weeks
363-.01107 -.05389 (363*2π)/18345 weeks
364-.01883 -.0433 (364*2π)/18345 weeks
365-.01545 -.04194 (365*2π)/18345 weeks
366-.03101 -.04869 (366*2π)/18345 weeks
367-.00965 -.03619 (367*2π)/18345 weeks
368-.02598 -.068 (368*2π)/18345 weeks
369-.04702 -.03726 (369*2π)/18345 weeks
370-.02115 -.05295 (370*2π)/18345 weeks
371-.04737 -.02244 (371*2π)/18345 weeks
372-.00564 -.05033 (372*2π)/18345 weeks
373-.05631 -.05328 (373*2π)/18345 weeks
374-.03897 -.02743 (374*2π)/18345 weeks
375-.04614 -.02146 (375*2π)/18345 weeks
376-.00988 -.0131 (376*2π)/18345 weeks
377-.02451 -.03905 (377*2π)/18345 weeks
378-.03919 -.02788 (378*2π)/18345 weeks
379-.02411 -.01338 (379*2π)/18345 weeks
380-.01807 -.04138 (380*2π)/18345 weeks
381-.03022 -.02633 (381*2π)/18345 weeks
382-.02639 -.05772 (382*2π)/18345 weeks
383-.06529 -.0028 (383*2π)/18345 weeks
384-.02107 -.01821 (384*2π)/18345 weeks
385-.0408 -.02719 (385*2π)/18345 weeks
386-.02712 -.00243 (386*2π)/18345 weeks
387-.03888 -.0336 (387*2π)/18345 weeks
388-.02802 .00849 (388*2π)/18345 weeks
389-.00024 -.00131 (389*2π)/18345 weeks
390.00647 -.03045 (390*2π)/18345 weeks
391-.02259 -.03342 (391*2π)/18345 weeks
392-.01325 -.03533 (392*2π)/18345 weeks
393-.0325 -.02514 (393*2π)/18345 weeks
394-.01379 -.02803 (394*2π)/18345 weeks
395-.0292 -.02078 (395*2π)/18345 weeks
396-.02423 -.01285 (396*2π)/18345 weeks
397-.00228 -.00919 (397*2π)/18345 weeks
398-.00232 -.0167 (398*2π)/18345 weeks
399.01238 -.01964 (399*2π)/18345 weeks
400.00162 -.05041 (400*2π)/18345 weeks
401-.00671 -.03379 (401*2π)/18345 weeks
402-.0088 -.04959 (402*2π)/18345 weeks
403-.00398 -.04393 (403*2π)/18345 weeks
404-.02175 -.04762 (404*2π)/18345 weeks
405-.02763 -.04013 (405*2π)/18345 weeks
406-.02408 -.05396 (406*2π)/18345 weeks
407-.04099 -.01624