Back to list of Stocks    See Also: Seasonal Analysis of AXRGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AXR (AMREP Corporation Common Stock)


AXR (AMREP Corporation Common Stock) appears to have interesting cyclic behaviour every 229 weeks (2.1599*sine), 85 weeks (1.8874*sine), and 208 weeks (1.6629*cosine).

AXR (AMREP Corporation Common Stock) has an average price of 9.37 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 5/3/1973 to 2/21/2017 for AXR (AMREP Corporation Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09.37361   0 
1.06178 -8.34177 (1*2π)/22862,286 weeks
2-8.54136 -4.48405 (2*2π)/22861,143 weeks
3-2.18675 4.53701 (3*2π)/2286762 weeks
45.06211 3.64918 (4*2π)/2286572 weeks
52.16423 -3.65288 (5*2π)/2286457 weeks
6-2.11345 -3.68446 (6*2π)/2286381 weeks
7-2.34071 1.80363 (7*2π)/2286327 weeks
8.59398 2.43797 (8*2π)/2286286 weeks
92.10075 -.15622 (9*2π)/2286254 weeks
10.44949 -2.1599 (10*2π)/2286229 weeks
11-1.66288 .08081 (11*2π)/2286208 weeks
12-.06793 .97928 (12*2π)/2286191 weeks
131.60448 .17671 (13*2π)/2286176 weeks
14.37337 -.93081 (14*2π)/2286163 weeks
15-1.18753 -.62985 (15*2π)/2286152 weeks
16.13504 .46683 (16*2π)/2286143 weeks
171.04232 -.05539 (17*2π)/2286134 weeks
18-.26672 -.87359 (18*2π)/2286127 weeks
19-1.27182 -.14862 (19*2π)/2286120 weeks
20-.13158 1.29172 (20*2π)/2286114 weeks
211.6554 .49679 (21*2π)/2286109 weeks
22.53103 -1.33418 (22*2π)/2286104 weeks
23-1.01184 -1.1488 (23*2π)/228699 weeks
24-1.04933 .85059 (24*2π)/228695 weeks
25.75701 1.42917 (25*2π)/228691 weeks
261.56094 -.51136 (26*2π)/228688 weeks
27-.11708 -1.88739 (27*2π)/228685 weeks
28-1.48176 -.09423 (28*2π)/228682 weeks
29-.51828 1.42503 (29*2π)/228679 weeks
301.39927 .44096 (30*2π)/228676 weeks
31.73342 -1.07159 (31*2π)/228674 weeks
32-.82207 -.92683 (32*2π)/228671 weeks
33-.91022 .27644 (33*2π)/228669 weeks
34.44053 .99861 (34*2π)/228667 weeks
35.88326 -.1769 (35*2π)/228665 weeks
36.00406 -1.10117 (36*2π)/228664 weeks
37-.74087 -.19806 (37*2π)/228662 weeks
38-.38248 .69112 (38*2π)/228660 weeks
39.59345 .1702 (39*2π)/228659 weeks
40.31596 -.74892 (40*2π)/228657 weeks
41-.49747 -.33361 (41*2π)/228656 weeks
42-.59339 .44896 (42*2π)/228654 weeks
43.3952 .3432 (43*2π)/228653 weeks
44.67757 -.16831 (44*2π)/228652 weeks
45-.28729 -.60306 (45*2π)/228651 weeks
46-.58469 -.01507 (46*2π)/228650 weeks
47.09966 .51576 (47*2π)/228649 weeks
48.46181 -.06373 (48*2π)/228648 weeks
49-.06374 -.49301 (49*2π)/228647 weeks
50-.53075 -.06736 (50*2π)/228646 weeks
51.02496 .54328 (51*2π)/228645 weeks
52.46917 .0109 (52*2π)/228644 weeks
53.13122 -.60176 (53*2π)/228643 weeks
54-.51336 -.1213 (54*2π)/228642 weeks
55-.151 .45575 (55*2π)/228642 weeks
56.42877 .07175 (56*2π)/228641 weeks
57.13526 -.5859 (57*2π)/228640 weeks
58-.45494 -.32272 (58*2π)/228639 weeks
59-.47228 .43591 (59*2π)/228639 weeks
60.37003 .46361 (60*2π)/228638 weeks
61.53096 -.32649 (61*2π)/228637 weeks
62-.347 -.46604 (62*2π)/228637 weeks
63-.57053 .1229 (63*2π)/228636 weeks
64.26771 .53932 (64*2π)/228636 weeks
65.5985 -.06437 (65*2π)/228635 weeks
66-.19321 -.69985 (66*2π)/228635 weeks
67-.53785 -.02286 (67*2π)/228634 weeks
68-.08387 .53913 (68*2π)/228634 weeks
69.41995 .13004 (69*2π)/228633 weeks
70.16547 -.50163 (70*2π)/228633 weeks
71-.42941 -.10675 (71*2π)/228632 weeks
72-.08779 .43066 (72*2π)/228632 weeks
73.44937 .00512 (73*2π)/228631 weeks
74.11089 -.39408 (74*2π)/228631 weeks
75-.46514 -.20693 (75*2π)/228630 weeks
76-.13981 .24967 (76*2π)/228630 weeks
77.34531 .25205 (77*2π)/228630 weeks
78.16959 -.287 (78*2π)/228629 weeks
79-.25386 -.35 (79*2π)/228629 weeks
80-.31985 .20058 (80*2π)/228629 weeks
81.05912 .32576 (81*2π)/228628 weeks
82.31043 -.10102 (82*2π)/228628 weeks
83-.04293 -.24389 (83*2π)/228628 weeks
84-.2971 -.02551 (84*2π)/228627 weeks
85-.00029 .31078 (85*2π)/228627 weeks
86.3078 .11445 (86*2π)/228627 weeks
87.08339 -.27042 (87*2π)/228626 weeks
88-.16263 -.20545 (88*2π)/228626 weeks
89-.10426 .19654 (89*2π)/228626 weeks
90.20311 .07475 (90*2π)/228625 weeks
91.08146 -.27678 (91*2π)/228625 weeks
92-.14631 -.10254 (92*2π)/228625 weeks
93-.15149 .16183 (93*2π)/228625 weeks
94.16736 .06026 (94*2π)/228624 weeks
95.08826 -.14974 (95*2π)/228624 weeks
96-.2026 -.13853 (96*2π)/228624 weeks
97-.1155 .19834 (97*2π)/228624 weeks
98.22693 .21225 (98*2π)/228623 weeks
99.23286 -.14902 (99*2π)/228623 weeks
100-.12256 -.31561 (100*2π)/228623 weeks
101-.21554 .10336 (101*2π)/228623 weeks
102.022 .27226 (102*2π)/228622 weeks
103.23338 -.059 (103*2π)/228622 weeks
104.13816 -.27288 (104*2π)/228622 weeks
105-.25425 -.08753 (105*2π)/228622 weeks
106-.21796 .13925 (106*2π)/228622 weeks
107.20673 .23046 (107*2π)/228621 weeks
108.26507 -.05618 (108*2π)/228621 weeks
109-.02951 -.31637 (109*2π)/228621 weeks
110-.25345 -.13682 (110*2π)/228621 weeks
111-.15056 .21448 (111*2π)/228621 weeks
112.12374 .22848 (112*2π)/228620 weeks
113.22378 -.10581 (113*2π)/228620 weeks
114-.00936 -.16256 (114*2π)/228620 weeks
115-.1374 -.06651 (115*2π)/228620 weeks
116-.04789 .05144 (116*2π)/228620 weeks
117.10467 .12494 (117*2π)/228620 weeks
118.09653 -.11435 (118*2π)/228619 weeks
119-.03559 -.16555 (119*2π)/228619 weeks
120-.05804 .01386 (120*2π)/228619 weeks
121-.11687 -.01667 (121*2π)/228619 weeks
122.01955 .01169 (122*2π)/228619 weeks
123-.01298 .07848 (123*2π)/228619 weeks
124.09119 .0212 (124*2π)/228618 weeks
125.09877 -.10619 (125*2π)/228618 weeks
126-.14404 -.09818 (126*2π)/228618 weeks
127-.17334 .04141 (127*2π)/228618 weeks
128.07314 .1792 (128*2π)/228618 weeks
129.21344 -.01014 (129*2π)/228618 weeks
130-.00245 -.25516 (130*2π)/228618 weeks
131-.16647 -.06186 (131*2π)/228617 weeks
132-.18231 .1017 (132*2π)/228617 weeks
133.05856 .2136 (133*2π)/228617 weeks
134.17456 -.05639 (134*2π)/228617 weeks
135.00095 -.14865 (135*2π)/228617 weeks
136-.09834 -.00937 (136*2π)/228617 weeks
137-.00808 .02907 (137*2π)/228617 weeks
138.05469 .04411 (138*2π)/228617 weeks
139.05797 -.09773 (139*2π)/228616 weeks
140-.04492 -.09629 (140*2π)/228616 weeks
141-.05188 .00447 (141*2π)/228616 weeks
142-.07272 -.00219 (142*2π)/228616 weeks
143.035 -.00841 (143*2π)/228616 weeks
144-.07289 .00806 (144*2π)/228616 weeks
145-.02767 .05492 (145*2π)/228616 weeks
146.08228 .0555 (146*2π)/228616 weeks
147.09736 -.05168 (147*2π)/228616 weeks
148-.05975 -.0987 (148*2π)/228615 weeks
149-.08538 .02871 (149*2π)/228615 weeks
150.0808 .12203 (150*2π)/228615 weeks
151.1196 -.13188 (151*2π)/228615 weeks
152-.05295 -.20636 (152*2π)/228615 weeks
153-.24423 .01505 (153*2π)/228615 weeks
154-.09423 .17376 (154*2π)/228615 weeks
155.20765 .09806 (155*2π)/228615 weeks
156.10207 -.12632 (156*2π)/228615 weeks
157-.14309 -.10707 (157*2π)/228615 weeks
158-.0703 .06177 (158*2π)/228614 weeks
159.1317 .1258 (159*2π)/228614 weeks
160.09959 -.15141 (160*2π)/228614 weeks
161-.10678 -.18501 (161*2π)/228614 weeks
162-.16009 .06712 (162*2π)/228614 weeks
163.00988 .09723 (163*2π)/228614 weeks
164.10836 -.04033 (164*2π)/228614 weeks
165-.04087 -.08318 (165*2π)/228614 weeks
166-.15919 .02275 (166*2π)/228614 weeks
167.04032 .11366 (167*2π)/228614 weeks
168.1308 .05083 (168*2π)/228614 weeks
169.03673 -.13735 (169*2π)/228614 weeks
170-.08963 -.08438 (170*2π)/228613 weeks
171-.05764 .0987 (171*2π)/228613 weeks
172.0815 .02447 (172*2π)/228613 weeks
173.04273 -.13395 (173*2π)/228613 weeks
174-.17138 -.07995 (174*2π)/228613 weeks
175-.09406 .17089 (175*2π)/228613 weeks
176.12022 .13563 (176*2π)/228613 weeks
177.11364 -.09931 (177*2π)/228613 weeks
178-.05894 -.10215 (178*2π)/228613 weeks
179-.07766 .05977 (179*2π)/228613 weeks
180.11195 .10293 (180*2π)/228613 weeks
181.10226 -.12602 (181*2π)/228613 weeks
182-.06717 -.12412 (182*2π)/228613 weeks
183-.11217 .05295 (183*2π)/228612 weeks
184.00566 .06799 (184*2π)/228612 weeks
185.07302 -.01647 (185*2π)/228612 weeks
186-.02076 -.07853 (186*2π)/228612 weeks
187-.09907 .03217 (187*2π)/228612 weeks
188.01425 .08343 (188*2π)/228612 weeks
189.08882 .03963 (189*2π)/228612 weeks
190.06843 -.06512 (190*2π)/228612 weeks
191-.04111 -.03855 (191*2π)/228612 weeks
192-.02312 .02618 (192*2π)/228612 weeks
193.01847 -.04537 (193*2π)/228612 weeks
194.02957 -.0358 (194*2π)/228612 weeks
195-.08762 .02286 (195*2π)/228612 weeks
196-.06194 .09669 (196*2π)/228612 weeks
197.14022 .03014 (197*2π)/228612 weeks
198.09206 -.07935 (198*2π)/228612 weeks
199-.09468 -.09571 (199*2π)/228611 weeks
200-.07726 .0464 (200*2π)/228611 weeks
201.09976 .13247 (201*2π)/228611 weeks
202.12963 -.05183 (202*2π)/228611 weeks
203-.01933 -.19559 (203*2π)/228611 weeks
204-.14627 -.03804 (204*2π)/228611 weeks
205-.08666 .13852 (205*2π)/228611 weeks
206.08853 .08841 (206*2π)/228611 weeks
207.12145 -.06237 (207*2π)/228611 weeks
208-.0422 -.08558 (208*2π)/228611 weeks
209-.10617 .03181 (209*2π)/228611 weeks
210.01531 .10063 (210*2π)/228611 weeks
211.11856 .02652 (211*2π)/228611 weeks
212.09112 -.11107 (212*2π)/228611 weeks
213-.07603 -.10706 (213*2π)/228611 weeks
214-.07736 .00715 (214*2π)/228611 weeks
215-.03634 .08171 (215*2π)/228611 weeks
216.0473 .0563 (216*2π)/228611 weeks
217.06348 -.04963 (217*2π)/228611 weeks
218.00342 -.0339 (218*2π)/228610 weeks
219-.02595 -.01061 (219*2π)/228610 weeks
220-.01472 .00825 (220*2π)/228610 weeks
221.03192 -.034 (221*2π)/228610 weeks
222.00091 -.02025 (222*2π)/228610 weeks
223-.06558 .01413 (223*2π)/228610 weeks
224.03306 -.01071 (224*2π)/228610 weeks
225.01963 -.01334 (225*2π)/228610 weeks
226-.02235 -.02233