Back to list of Stocks    See Also: Seasonal Analysis of AXAGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AXA (AXA ADS)


AXA (AXA ADS) appears to have interesting cyclic behaviour every 22 weeks (.159*sine), 26 weeks (.0985*sine), and 9 weeks (.0976*cosine).

AXA (AXA ADS) has an average price of 1.36 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 11/1/2010 to 12/5/2016 for AXA (AXA ADS), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
01.36377   0 
1.0632 .69297 (1*2π)/288288 weeks
2-.96877 .39399 (2*2π)/288144 weeks
3-.16128 -.63907 (3*2π)/28896 weeks
4.32455 -.2953 (4*2π)/28872 weeks
5.09714 .13119 (5*2π)/28858 weeks
6.10427 .18154 (6*2π)/28848 weeks
7.04497 .11499 (7*2π)/28841 weeks
8-.05133 .02102 (8*2π)/28836 weeks
9-.09222 .02418 (9*2π)/28832 weeks
10.04313 .02998 (10*2π)/28829 weeks
11.03548 -.0985 (11*2π)/28826 weeks
12.0428 -.02615 (12*2π)/28824 weeks
13.03816 .15896 (13*2π)/28822 weeks
14.01404 .04481 (14*2π)/28821 weeks
15-.01079 -.04519 (15*2π)/28819 weeks
16.03851 .0276 (16*2π)/28818 weeks
17.04905 -.01105 (17*2π)/28817 weeks
18.02136 -.01015 (18*2π)/28816 weeks
19.04831 .01098 (19*2π)/28815 weeks
20.06085 .02833 (20*2π)/28814 weeks
21.02215 .07353 (21*2π)/28814 weeks
22-.01227 .01225 (22*2π)/28813 weeks
23.04703 -.05347 (23*2π)/28813 weeks
24.05202 -.00647 (24*2π)/28812 weeks
25.0705 .0382 (25*2π)/28812 weeks
26.05242 .04259 (26*2π)/28811 weeks
27.06359 .06115 (27*2π)/28811 weeks
28-.03042 .07153 (28*2π)/28810 weeks
29-.02313 -.02344 (29*2π)/28810 weeks
30.08081 -.05998 (30*2π)/28810 weeks
31.09763 .02212 (31*2π)/2889 weeks
32.04386 .07198 (32*2π)/2889 weeks
33.03762 .04947 (33*2π)/2889 weeks
34.02119 .03975 (34*2π)/2888 weeks
35-.00852 .03413 (35*2π)/2888 weeks
36.01425 -.02958 (36*2π)/2888 weeks
37.07193 -.01091 (37*2π)/2888 weeks
38.04909 .03872 (38*2π)/2888 weeks
39.00173 .04496 (39*2π)/2887 weeks
40.02084 -.01841 (40*2π)/2887 weeks
41.04501 -.00046 (41*2π)/2887 weeks
42.05853 .03146 (42*2π)/2887 weeks
43.02381 .01624 (43*2π)/2887 weeks
44.00038 -.00969 (44*2π)/2887 weeks
45.04864 .01001 (45*2π)/2886 weeks
46.07247 -.00475 (46*2π)/2886 weeks
47.0252 .04434 (47*2π)/2886 weeks
48.04319 .03681 (48*2π)/2886 weeks
49-.00393 .01076 (49*2π)/2886 weeks
50.00976 -.02149 (50*2π)/2886 weeks
51.06777 -.03093 (51*2π)/2886 weeks
52.07898 .05677 (52*2π)/2886 weeks
53.00512 .04883 (53*2π)/2885 weeks
54-.00588 -.01178 (54*2π)/2885 weeks
55.0351 -.00418 (55*2π)/2885 weeks
56.043 .03092 (56*2π)/2885 weeks
57.05415 .01781 (57*2π)/2885 weeks
58.03369 .03727 (58*2π)/2885 weeks
59.03956 .04766 (59*2π)/2885 weeks
60.0012 .03814 (60*2π)/2885 weeks
61.02292 .02094 (61*2π)/2885 weeks
62.02163 .04223 (62*2π)/2885 weeks
63.00149 .02979 (63*2π)/2885 weeks
64-.00603 -.01746 (64*2π)/2885 weeks
65.06205 .01988 (65*2π)/2884 weeks
66.04652 .03867 (66*2π)/2884 weeks
67-.03279 .05227 (67*2π)/2884 weeks
68.01246 -.0138 (68*2π)/2884 weeks
69.03475 -.00051 (69*2π)/2884 weeks
70.01536 .03684 (70*2π)/2884 weeks
71.0077 -.00577 (71*2π)/2884 weeks
72.04896 .01691 (72*2π)/2884 weeks
73.01974 .0533 (73*2π)/2884 weeks
74-.0215 .01858 (74*2π)/2884 weeks
75.01725 -.03318 (75*2π)/2884 weeks
76.03666 .03171 (76*2π)/2884 weeks
77.01781 .02269 (77*2π)/2884 weeks
78.01925 -.00349 (78*2π)/2884 weeks
79.03337 .03759 (79*2π)/2884 weeks
80.00277 .05789 (80*2π)/2884 weeks
81-.02852 -.00302 (81*2π)/2884 weeks
82.04446 -.02433 (82*2π)/2884 weeks
83.06188 .01941 (83*2π)/2883 weeks
84.02154 .04514 (84*2π)/2883 weeks
85.00436 .02553 (85*2π)/2883 weeks
86.00172 .02804 (86*2π)/2883 weeks
87-.01996 .02042 (87*2π)/2883 weeks
88.01903 -.01087 (88*2π)/2883 weeks
89.03681 -.02524 (89*2π)/2883 weeks
90.04938 .03267 (90*2π)/2883 weeks
91.03391 .03722 (91*2π)/2883 weeks
92-.02076 .01975 (92*2π)/2883 weeks
93.00381 -.00002 (93*2π)/2883 weeks
94.04036 .00528 (94*2π)/2883 weeks
95.03223 .00568 (95*2π)/2883 weeks
96.01285 .01119 (96*2π)/2883 weeks
97.04369 .02191 (97*2π)/2883 weeks
98.03794 .01963 (98*2π)/2883 weeks
99.00489 .05699 (99*2π)/2883 weeks
100-.01549 .00761 (100*2π)/2883 weeks
101.00471 -.00686 (101*2π)/2883 weeks
102.03626 .00367 (102*2π)/2883 weeks
103.02488 .04342 (103*2π)/2883 weeks
104-.01525 .00492 (104*2π)/2883 weeks
105.01728 .00882 (105*2π)/2883 weeks
106.02008 .02714 (106*2π)/2883 weeks
107-.0323 .00881 (107*2π)/2883 weeks
108.02255 -.01152 (108*2π)/2883 weeks
109.03129 -.00626 (109*2π)/2883 weeks
110.01287 .02237 (110*2π)/2883 weeks
111.03958 .01911 (111*2π)/2883 weeks
112.00347 .04915 (112*2π)/2883 weeks
113-.03001 .01786 (113*2π)/2883 weeks
114-.00272 -.01672 (114*2π)/2883 weeks
115.03818 .0092 (115*2π)/2883 weeks
116.01318 .04097 (116*2π)/2882 weeks
117.00337 .0242 (117*2π)/2882 weeks
118-.0147 .01436 (118*2π)/2882 weeks
119.00848 .00612 (119*2π)/2882 weeks
120-.00223 -.0061 (120*2π)/2882 weeks
121-.00448 .02068 (121*2π)/2882 weeks
122.01232 -.00394 (122*2π)/2882 weeks
123.01197 -.00064 (123*2π)/2882 weeks
124.00624 .01821 (124*2π)/2882 weeks
125.00286 .00856 (125*2π)/2882 weeks
126.00486 .00708 (126*2π)/2882 weeks
127-.0199 -.01513 (127*2π)/2882 weeks
128.01244 .00157 (128*2π)/2882 weeks
129.02687 .00702 (129*2π)/2882 weeks
130.00033 .01894 (130*2π)/2882 weeks
131.00136 .01491 (131*2π)/2882 weeks
132-.00442 -.00134 (132*2π)/2882 weeks
133-.01849 -.00041 (133*2π)/2882 weeks
134.01478 -.02248 (134*2π)/2882 weeks
135.04098 .01244 (135*2π)/2882 weeks
136-.01379 .04428 (136*2π)/2882 weeks
137-.03547 -.01753 (137*2π)/2882 weeks
138.00235 -.03639 (138*2π)/2882 weeks
139.03422 .00693 (139*2π)/2882 weeks
140.0142 -.01192 (140*2π)/2882 weeks
141-.00512 -.00898 (141*2π)/2882 weeks
142.0346 .00043 (142*2π)/2882 weeks
143.01934 -.00823 (143*2π)/2882 weeks
144.01038   (144*2π)/2882 weeks
145.01934 .00823 (145*2π)/2882 weeks
146.0346 -.00043 (146*2π)/2882 weeks
147-.00512 .00898 (147*2π)/2882 weeks
148.0142 .01192 (148*2π)/2882 weeks
149.03422 -.00693 (149*2π)/2882 weeks
150.00235 .03639 (150*2π)/2882 weeks
151-.03547 .01753 (151*2π)/2882 weeks
152-.01379 -.04428 (152*2π)/2882 weeks
153.04098 -.01244 (153*2π)/2882 weeks
154.01478 .02248 (154*2π)/2882 weeks
155-.01849 .00041 (155*2π)/2882 weeks
156-.00442 .00134 (156*2π)/2882 weeks
157.00136 -.01491 (157*2π)/2882 weeks
158.00033 -.01894 (158*2π)/2882 weeks
159.02687 -.00702 (159*2π)/2882 weeks
160.01244 -.00157 (160*2π)/2882 weeks
161-.0199 .01513 (161*2π)/2882 weeks
162.00486 -.00708 (162*2π)/2882 weeks
163.00286 -.00856 (163*2π)/2882 weeks
164.00624 -.01821 (164*2π)/2882 weeks
165.01197 .00064 (165*2π)/2882 weeks
166.01232 .00394 (166*2π)/2882 weeks
167-.00448 -.02068 (167*2π)/2882 weeks
168-.00223 .0061 (168*2π)/2882 weeks
169.00848 -.00612 (169*2π)/2882 weeks
170-.0147 -.01436 (170*2π)/2882 weeks
171.00337 -.0242 (171*2π)/2882 weeks
172.01318 -.04097 (172*2π)/2882 weeks
173.03818 -.0092 (173*2π)/2882 weeks
174-.00272 .01672 (174*2π)/2882 weeks
175-.03001 -.01786 (175*2π)/2882 weeks
176.00347 -.04915 (176*2π)/2882 weeks
177.03958 -.01911 (177*2π)/2882 weeks
178.01287 -.02237 (178*2π)/2882 weeks
179.03129 .00626 (179*2π)/2882 weeks
180.02255 .01152 (180*2π)/2882 weeks
181-.0323 -.00881 (181*2π)/2882 weeks
182.02008 -.02714 (182*2π)/2882 weeks
183.01728 -.00882 (183*2π)/2882 weeks
184-.01525 -.00492 (184*2π)/2882 weeks
185.02488 -.04342 (185*2π)/2882 weeks
186.03626 -.00367 (186*2π)/2882 weeks
187.00471 .00686 (187*2π)/2882 weeks
188-.01549 -.00761 (188*2π)/2882 weeks
189.00489 -.05699 (189*2π)/2882 weeks
190.03794 -.01963 (190*2π)/2882 weeks
191.04369 -.02191 (191*2π)/2882 weeks
192.01285 -.01119 (192*2π)/2882 weeks
193.03223 -.00568 (193*2π)/2881 weeks
194.04036 -.00528 (194*2π)/2881 weeks
195.00381 .00002 (195*2π)/2881 weeks
196-.02076 -.01975 (196*2π)/2881 weeks
197.03391 -.03722 (197*2π)/2881 weeks
198.04938 -.03267 (198*2π)/2881 weeks
199.03681 .02524 (199*2π)/2881 weeks
200.01903 .01087 (200*2π)/2881 weeks
201-.01996 -.02042 (201*2π)/2881 weeks
202.00172 -.02804 (202*2π)/2881 weeks
203.00436 -.02553 (203*2π)/2881 weeks
204.02154 -.04514 (204*2π)/2881 weeks
205.06188 -.01941 (205*2π)/2881 weeks
206.04446 .02433 (206*2π)/2881 weeks
207-.02852 .00302 (207*2π)/2881 weeks
208.00277 -.05789 (208*2π)/2881 weeks
209.03337 -.03759 (209*2π)/2881 weeks
210.01925 .00349 (210*2π)/2881 weeks
211.01781 -.02269 (211*2π)/2881 weeks
212.03666 -.03171 (212*2π)/2881 weeks
213.01725 .03318 (213*2π)/2881 weeks
214-.0215 -.01858 (214*2π)/2881 weeks
215.01974 -.0533 (215*2π)/2881 weeks
216.04896 -.01691 (216*2π)/2881 weeks
217.0077 .00577 (217*2π)/2881 weeks
218.01536 -.03684 (218*2π)/2881 weeks
219.03475 .00051 (219*2π)/2881 weeks
220.01246 .0138 (220*2π)/2881 weeks
221-.03279 -.05227 (221*2π)/2881 weeks
222.04652 -.03867 (222*2π)/2881 weeks
223.06205 -.01988 (223*2π)/2881 weeks
224-.00603 .01746 (224*2π)/2881 weeks
225.00149 -.02979 (225*2π)/2881 weeks
226.02163 -.04223 (226*2π)/2881 weeks
227.02292 -.02094 (227*2π)/2881 weeks
228.0012 -.03814 (228*2π)/2881 weeks
229.03956 -.04766 (229*2π)/2881 weeks
230.03369 -.03727 (230*2π)/2881 weeks
231.05415 -.01781 (231*2π)/2881 weeks
232.043 -.03092 (232*2π)/2881 weeks
233.0351 .00418 (233*2π)/2881 weeks
234-.00588 .01178 (234*2π)/2881 weeks
235.00512 -.04883 (235*2π)/2881 weeks
236.07898 -.05677 (236*2π)/2881 weeks
237.06777 .03093 (237*2π)/2881 weeks
238.00976 .02149 (238*2π)/2881 weeks
239-.00393 -.01076 (239*2π)/2881 weeks
240.04319 -.03681 (240*2π)/2881 weeks
241.0252 -.04434 (241*2π)/2881 weeks
242.07247 .00475 (242*2π)/2881 weeks
243.04864 -.01001 (243*2π)/2881 weeks
244.00038 .00969 (244*2π)/2881 weeks
245.02381 -.01624 (245*2π)/2881 weeks
246.05853 -.03146 (246*2π)/2881 weeks
247.04501 .00046 (247*2π)/2881 weeks
248.02084 .01841 (248*2π)/2881 weeks
249.00173 -.04496 (249*2π)/2881 weeks
250.04909 -.03872 (250*2π)/2881 weeks
251.07193 .01091 (251*2π)/2881 weeks
252.01425 .02958 (252*2π)/2881 weeks
253-.00852 -.03413 (253*2π)/2881 weeks
254.02119 -.03975 (254*2π)/2881 weeks
255.03762 -.04947 (255*2π)/2881 weeks
256.04386 -.07198 (256*2π)/2881 weeks
257.09763 -.02212 (257*2π)/2881 weeks
258.08081 .05998 (258*2π)/2881 weeks
259-.02313 .02344 (259*2π)/2881 weeks
260-.03042 -.07153 (260*2π)/2881 weeks
261.06359 -.06115 (261*2π)/2881 weeks
262.05242 -.04259 (262*2π)/2881 weeks
263.0705 -.0382 (263*2π)/2881 weeks
264.05202 .00647 (264*2π)/2881 weeks
265.04703 .05347 (265*2π)/2881 weeks
266-.01227 -.01225 (266*2π)/2881 weeks
267.02215 -.07353 (267*2π)/2881 weeks
268.06085 -.02833 (268*2π)/2881 weeks
269.04831 -.01098 (269*2π)/2881 weeks
270.02136 .01015 (270*2π)/2881 weeks
271.04905 .01105 (271*2π)/2881 weeks
272.03851 -.0276 (272*2π)/2881 weeks
273-.01079 .04519 (273*2π)/2881 weeks
274.01404 -.04481 (274*2π)/2881 weeks
275.03816 -.15896 (275*2π)/2881 weeks
276.0428 .02615 (276*2π)/2881 weeks
277.03548 .0985 (277*2π)/2881 weeks
278.04313 -.02998 (278*2π)/2881 weeks
279-.09222 -.02418 (279*2π)/2881 weeks
280-.05133 -.02102 (280*2π)/2881 weeks
281.04497 -.11499 (281*2π)/2881 weeks
282.10427 -.18154 (282*2π)/2881 weeks
283.09714 -.13119 (283*2π)/2881 weeks
284.32455 .2953 (284*2π)/2881 weeks
285-.16128 .63907 (285*2π)/2881 weeks
286-.96877 -.39399 (286*2π)/2881 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.