Back to list of Stocks    See Also: Seasonal Analysis of AVNGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AVN


AVN appears to have interesting cyclic behaviour every 22 weeks (2.2911*sine), 13 weeks (1.3719*sine), and 17 weeks (1.2122*sine).

AVN has an average price of 18.44 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 4/30/2012 to 11/28/2016 for AVN, this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
018.44417   0 
1-3.57633 -19.3793 (1*2π)/240240 weeks
22.09167 -3.3218 (2*2π)/240120 weeks
3-1.95708 -2.47665 (3*2π)/24080 weeks
4.49782 -3.33822 (4*2π)/24060 weeks
51.40076 -.64694 (5*2π)/24048 weeks
6-1.36173 -3.32791 (6*2π)/24040 weeks
71.12949 -.69668 (7*2π)/24034 weeks
8-.51503 -1.71669 (8*2π)/24030 weeks
9-.36174 -1.54046 (9*2π)/24027 weeks
10.792 -.37081 (10*2π)/24024 weeks
11-.86466 -2.29111 (11*2π)/24022 weeks
12-.33237 -.23376 (12*2π)/24020 weeks
13-.09083 -.26251 (13*2π)/24018 weeks
14.46329 -1.21225 (14*2π)/24017 weeks
15-.26958 -.6224 (15*2π)/24016 weeks
16-.10901 -.80032 (16*2π)/24015 weeks
17.29546 -.5367 (17*2π)/24014 weeks
18-.3924 -1.37186 (18*2π)/24013 weeks
19-.44273 -.00021 (19*2π)/24013 weeks
20.09874 -.72902 (20*2π)/24012 weeks
21-.12801 -.60803 (21*2π)/24011 weeks
22-.53766 -.21411 (22*2π)/24011 weeks
23.51003 -.57529 (23*2π)/24010 weeks
24-.53636 -.42073 (24*2π)/24010 weeks
25.02915 -.44285 (25*2π)/24010 weeks
26.21522 -.3802 (26*2π)/2409 weeks
27-.6118 -.62912 (27*2π)/2409 weeks
28.3583 -.15985 (28*2π)/2409 weeks
29-.12494 -.57178 (29*2π)/2408 weeks
30-.28215 -.77166 (30*2π)/2408 weeks
31-.01446 -.08799 (31*2π)/2408 weeks
32-.45533 -.68201 (32*2π)/2408 weeks
33.03283 -.28053 (33*2π)/2407 weeks
34-.47914 -.14943 (34*2π)/2407 weeks
35.24865 -.59146 (35*2π)/2407 weeks
36-.57604 -.34454 (36*2π)/2407 weeks
37-.26426 -.10633 (37*2π)/2406 weeks
38.23033 -.16406 (38*2π)/2406 weeks
39-.29972 -.81164 (39*2π)/2406 weeks
40-.52685 -.0521 (40*2π)/2406 weeks
41-.1227 -.22643 (41*2π)/2406 weeks
42-.24445 -.15723 (42*2π)/2406 weeks
43-.2374 -.10293 (43*2π)/2406 weeks
44.23058 -.30525 (44*2π)/2405 weeks
45-.56844 -.57042 (45*2π)/2405 weeks
46-.52549 .02208 (46*2π)/2405 weeks
47.05553 .25961 (47*2π)/2405 weeks
48-.15694 -.42174 (48*2π)/2405 weeks
49-.10761 -.03569 (49*2π)/2405 weeks
50-.16249 -.1033 (50*2π)/2405 weeks
51-.17156 -.44182 (51*2π)/2405 weeks
52-.30125 .26883 (52*2π)/2405 weeks
53.03045 -.30056 (53*2π)/2405 weeks
54-.25096 -.18847 (54*2π)/2404 weeks
55-.30984 .29315 (55*2π)/2404 weeks
56.39867 -.24325 (56*2π)/2404 weeks
57-.23979 -.28034 (57*2π)/2404 weeks
58-.29281 -.11925 (58*2π)/2404 weeks
59.15298 .04139 (59*2π)/2404 weeks
60-.17515 -.40621 (60*2π)/2404 weeks
61-.27962 -.00835 (61*2π)/2404 weeks
62.12052 .01738 (62*2π)/2404 weeks
63-.08368 -.40885 (63*2π)/2404 weeks
64-.33743 -.08694 (64*2π)/2404 weeks
65.08034 .0557 (65*2π)/2404 weeks
66-.0931 -.41158 (66*2π)/2404 weeks
67-.33809 -.11174 (67*2π)/2404 weeks
68-.02482 .16066 (68*2π)/2404 weeks
69.04423 -.42189 (69*2π)/2403 weeks
70-.32751 -.0582 (70*2π)/2403 weeks
71.02532 -.00249 (71*2π)/2403 weeks
72-.05107 -.47566 (72*2π)/2403 weeks
73-.41206 .02706 (73*2π)/2403 weeks
74-.03524 -.09912 (74*2π)/2403 weeks
75-.05514 -.18852 (75*2π)/2403 weeks
76-.3697 -.08741 (76*2π)/2403 weeks
77.12646 -.04486 (77*2π)/2403 weeks
78-.21045 -.40247 (78*2π)/2403 weeks
79-.5107 .01289 (79*2π)/2403 weeks
80.14301 .12243 (80*2π)/2403 weeks
81-.115 -.35282 (81*2π)/2403 weeks
82-.45083 -.15666 (82*2π)/2403 weeks
83.02585 .24486 (83*2π)/2403 weeks
84-.10907 -.40475 (84*2π)/2403 weeks
85-.31498 -.11097 (85*2π)/2403 weeks
86-.23178 .12097 (86*2π)/2403 weeks
87-.03364 -.2582 (87*2π)/2403 weeks
88-.40216 -.05537 (88*2π)/2403 weeks
89-.19261 .22401 (89*2π)/2403 weeks
90.18444 -.27649 (90*2π)/2403 weeks
91-.6274 -.16265 (91*2π)/2403 weeks
92-.11771 .3422 (92*2π)/2403 weeks
93.11408 -.18859 (93*2π)/2403 weeks
94-.43241 -.10744 (94*2π)/2403 weeks
95-.11469 .22301 (95*2π)/2403 weeks
96.14135 -.15697 (96*2π)/2403 weeks
97-.5103 -.19853 (97*2π)/2402 weeks
98-.09652 .25699 (98*2π)/2402 weeks
99.02772 -.00849 (99*2π)/2402 weeks
100-.28131 -.3092 (100*2π)/2402 weeks
101-.20201 .34772 (101*2π)/2402 weeks
102.02598 -.19026 (102*2π)/2402 weeks
103-.30094 -.07982 (103*2π)/2402 weeks
104-.21203 .26136 (104*2π)/2402 weeks
105.11262 -.07541 (105*2π)/2402 weeks
106-.24976 -.10396 (106*2π)/2402 weeks
107-.17268 .18207 (107*2π)/2402 weeks
108.10118 -.08042 (108*2π)/2402 weeks
109-.22579 -.15537 (109*2π)/2402 weeks
110-.28002 .14242 (110*2π)/2402 weeks
111.16036 -.02928 (111*2π)/2402 weeks
112-.38722 -.1806 (112*2π)/2402 weeks
113-.19442 .2732 (113*2π)/2402 weeks
114.21925 -.001 (114*2π)/2402 weeks
115-.34584 -.28681 (115*2π)/2402 weeks
116-.22357 .28048 (116*2π)/2402 weeks
117.16544 .03464 (117*2π)/2402 weeks
118-.25796 -.28409 (118*2π)/2402 weeks
119-.21708 .26002 (119*2π)/2402 weeks
120.10632   (120*2π)/2402 weeks
121-.21708 -.26002 (121*2π)/2402 weeks
122-.25796 .28409 (122*2π)/2402 weeks
123.16544 -.03464 (123*2π)/2402 weeks
124-.22357 -.28048 (124*2π)/2402 weeks
125-.34584 .28681 (125*2π)/2402 weeks
126.21925 .001 (126*2π)/2402 weeks
127-.19442 -.2732 (127*2π)/2402 weeks
128-.38722 .1806 (128*2π)/2402 weeks
129.16036 .02928 (129*2π)/2402 weeks
130-.28002 -.14242 (130*2π)/2402 weeks
131-.22579 .15537 (131*2π)/2402 weeks
132.10118 .08042 (132*2π)/2402 weeks
133-.17268 -.18207 (133*2π)/2402 weeks
134-.24976 .10396 (134*2π)/2402 weeks
135.11262 .07541 (135*2π)/2402 weeks
136-.21203 -.26136 (136*2π)/2402 weeks
137-.30094 .07982 (137*2π)/2402 weeks
138.02598 .19026 (138*2π)/2402 weeks
139-.20201 -.34772 (139*2π)/2402 weeks
140-.28131 .3092 (140*2π)/2402 weeks
141.02772 .00849 (141*2π)/2402 weeks
142-.09652 -.25699 (142*2π)/2402 weeks
143-.5103 .19853 (143*2π)/2402 weeks
144.14135 .15697 (144*2π)/2402 weeks
145-.11469 -.22301 (145*2π)/2402 weeks
146-.43241 .10744 (146*2π)/2402 weeks
147.11408 .18859 (147*2π)/2402 weeks
148-.11771 -.3422 (148*2π)/2402 weeks
149-.6274 .16265 (149*2π)/2402 weeks
150.18444 .27649 (150*2π)/2402 weeks
151-.19261 -.22401 (151*2π)/2402 weeks
152-.40216 .05537 (152*2π)/2402 weeks
153-.03364 .2582 (153*2π)/2402 weeks
154-.23178 -.12097 (154*2π)/2402 weeks
155-.31498 .11097 (155*2π)/2402 weeks
156-.10907 .40475 (156*2π)/2402 weeks
157.02585 -.24486 (157*2π)/2402 weeks
158-.45083 .15666 (158*2π)/2402 weeks
159-.115 .35282 (159*2π)/2402 weeks
160.14301 -.12243 (160*2π)/2402 weeks
161-.5107 -.01289 (161*2π)/2401 weeks
162-.21045 .40247 (162*2π)/2401 weeks
163.12646 .04486 (163*2π)/2401 weeks
164-.3697 .08741 (164*2π)/2401 weeks
165-.05514 .18852 (165*2π)/2401 weeks
166-.03524 .09912 (166*2π)/2401 weeks
167-.41206 -.02706 (167*2π)/2401 weeks
168-.05107 .47566 (168*2π)/2401 weeks
169.02532 .00249 (169*2π)/2401 weeks
170-.32751 .0582 (170*2π)/2401 weeks
171.04423 .42189 (171*2π)/2401 weeks
172-.02482 -.16066 (172*2π)/2401 weeks
173-.33809 .11174 (173*2π)/2401 weeks
174-.0931 .41158 (174*2π)/2401 weeks
175.08034 -.0557 (175*2π)/2401 weeks
176-.33743 .08694 (176*2π)/2401 weeks
177-.08368 .40885 (177*2π)/2401 weeks
178.12052 -.01738 (178*2π)/2401 weeks
179-.27962 .00835 (179*2π)/2401 weeks
180-.17515 .40621 (180*2π)/2401 weeks
181.15298 -.04139 (181*2π)/2401 weeks
182-.29281 .11925 (182*2π)/2401 weeks
183-.23979 .28034 (183*2π)/2401 weeks
184.39867 .24325 (184*2π)/2401 weeks
185-.30984 -.29315 (185*2π)/2401 weeks
186-.25096 .18847 (186*2π)/2401 weeks
187.03045 .30056 (187*2π)/2401 weeks
188-.30125 -.26883 (188*2π)/2401 weeks
189-.17156 .44182 (189*2π)/2401 weeks
190-.16249 .1033 (190*2π)/2401 weeks
191-.10761 .03569 (191*2π)/2401 weeks
192-.15694 .42174 (192*2π)/2401 weeks
193.05553 -.25961 (193*2π)/2401 weeks
194-.52549 -.02208 (194*2π)/2401 weeks
195-.56844 .57042 (195*2π)/2401 weeks
196.23058 .30525 (196*2π)/2401 weeks
197-.2374 .10293 (197*2π)/2401 weeks
198-.24445 .15723 (198*2π)/2401 weeks
199-.1227 .22643 (199*2π)/2401 weeks
200-.52685 .0521 (200*2π)/2401 weeks
201-.29972 .81164 (201*2π)/2401 weeks
202.23033 .16406 (202*2π)/2401 weeks
203-.26426 .10633 (203*2π)/2401 weeks
204-.57604 .34454 (204*2π)/2401 weeks
205.24865 .59146 (205*2π)/2401 weeks
206-.47914 .14943 (206*2π)/2401 weeks
207.03283 .28053 (207*2π)/2401 weeks
208-.45533 .68201 (208*2π)/2401 weeks
209-.01446 .08799 (209*2π)/2401 weeks
210-.28215 .77166 (210*2π)/2401 weeks
211-.12494 .57178 (211*2π)/2401 weeks
212.3583 .15985 (212*2π)/2401 weeks
213-.6118 .62912 (213*2π)/2401 weeks
214.21522 .3802 (214*2π)/2401 weeks
215.02915 .44285 (215*2π)/2401 weeks
216-.53636 .42073 (216*2π)/2401 weeks
217.51003 .57529 (217*2π)/2401 weeks
218-.53766 .21411 (218*2π)/2401 weeks
219-.12801 .60803 (219*2π)/2401 weeks
220.09874 .72902 (220*2π)/2401 weeks
221-.44273 .00021 (221*2π)/2401 weeks
222-.3924 1.37186 (222*2π)/2401 weeks
223.29546 .5367 (223*2π)/2401 weeks
224-.10901 .80032 (224*2π)/2401 weeks
225-.26958 .6224 (225*2π)/2401 weeks
226.46329 1.21225 (226*2π)/2401 weeks
227-.09083 .26251 (227*2π)/2401 weeks
228-.33237 .23376 (228*2π)/2401 weeks
229-.86466 2.29111 (229*2π)/2401 weeks
230.792 .37081 (230*2π)/2401 weeks
231-.36174 1.54046 (231*2π)/2401 weeks
232-.51503 1.71669 (232*2π)/2401 weeks
2331.12949 .69668 (233*2π)/2401 weeks
234-1.36173 3.32791 (234*2π)/2401 weeks
2351.40076 .64694 (235*2π)/2401 weeks
236.49782 3.33822 (236*2π)/2401 weeks
237-1.95708 2.47665 (237*2π)/2401 weeks
2382.09167 3.3218 (238*2π)/2401 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.