Back to list of Stocks    See Also: Seasonal Analysis of AUMIXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AUMIX (Allianz Nacm Ultra Micro Cap Institutional Clas)


AUMIX (Allianz Nacm Ultra Micro Cap Institutional Clas) appears to have interesting cyclic behaviour every 45 weeks (.6482*sine), 41 weeks (.4954*sine), and 49 weeks (.3627*sine).

AUMIX (Allianz Nacm Ultra Micro Cap Institutional Clas) has an average price of 13.77 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/30/2008 to 6/19/2017 for AUMIX (Allianz Nacm Ultra Micro Cap Institutional Clas), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
013.76658   0 
1-.7058 -6.98181 (1*2π)/491491 weeks
2-.47413 -1.99605 (2*2π)/491246 weeks
31.3016 -1.63203 (3*2π)/491164 weeks
4.29234 -.91243 (4*2π)/491123 weeks
5.69197 -1.09045 (5*2π)/49198 weeks
6.24578 -1.20858 (6*2π)/49182 weeks
7-.51342 -.26775 (7*2π)/49170 weeks
8-.30804 -.50741 (8*2π)/49161 weeks
9.17543 -.46929 (9*2π)/49155 weeks
10-.29027 -.36272 (10*2π)/49149 weeks
11-.05806 -.64823 (11*2π)/49145 weeks
12.00949 -.49539 (12*2π)/49141 weeks
13-.04888 -.40002 (13*2π)/49138 weeks
14.01448 -.39046 (14*2π)/49135 weeks
15-.21366 -.28465 (15*2π)/49133 weeks
16.09144 -.35415 (16*2π)/49131 weeks
17.09687 -.17842 (17*2π)/49129 weeks
18-.02048 -.26368 (18*2π)/49127 weeks
19.08949 -.24603 (19*2π)/49126 weeks
20.01168 -.29865 (20*2π)/49125 weeks
21-.08533 -.13806 (21*2π)/49123 weeks
22.07009 -.18052 (22*2π)/49122 weeks
23-.00035 -.12676 (23*2π)/49121 weeks
24-.00341 -.31091 (24*2π)/49120 weeks
25.03702 -.23522 (25*2π)/49120 weeks
26-.11897 -.36991 (26*2π)/49119 weeks
27-.20931 -.28401 (27*2π)/49118 weeks
28-.03502 -.08742 (28*2π)/49118 weeks
29.03246 -.21734 (29*2π)/49117 weeks
30.08109 -.15156 (30*2π)/49116 weeks
31-.01368 -.12157 (31*2π)/49116 weeks
32-.01151 -.19131 (32*2π)/49115 weeks
33-.01798 -.08381 (33*2π)/49115 weeks
34-.00639 -.14651 (34*2π)/49114 weeks
35-.00331 -.10413 (35*2π)/49114 weeks
36-.0239 -.03734 (36*2π)/49114 weeks
37-.01648 -.14938 (37*2π)/49113 weeks
38.07878 -.24384 (38*2π)/49113 weeks
39-.13773 -.10079 (39*2π)/49113 weeks
40-.0224 -.12025 (40*2π)/49112 weeks
41-.04574 -.12532 (41*2π)/49112 weeks
42-.10892 -.09119 (42*2π)/49112 weeks
43.02177 -.08556 (43*2π)/49111 weeks
44-.03594 -.17601 (44*2π)/49111 weeks
45-.09534 -.05377 (45*2π)/49111 weeks
46.00753 -.09025 (46*2π)/49111 weeks
47-.01512 -.08497 (47*2π)/49110 weeks
48-.03966 -.10325 (48*2π)/49110 weeks
49.02269 -.07745 (49*2π)/49110 weeks
50.02915 -.01577 (50*2π)/49110 weeks
51-.00615 -.13646 (51*2π)/49110 weeks
52-.03939 -.10281 (52*2π)/4919 weeks
53.00096 -.09228 (53*2π)/4919 weeks
54-.0529 -.14978 (54*2π)/4919 weeks
55-.01693 -.101 (55*2π)/4919 weeks
56-.06386 -.02505 (56*2π)/4919 weeks
57.01841 -.08887 (57*2π)/4919 weeks
58-.07926 -.11137 (58*2π)/4918 weeks
59-.08028 -.02209 (59*2π)/4918 weeks
60.03201 -.08348 (60*2π)/4918 weeks
61-.07418 -.04031 (61*2π)/4918 weeks
62.00782 -.07527 (62*2π)/4918 weeks
63.04584 -.04695 (63*2π)/4918 weeks
64-.00495 -.07104 (64*2π)/4918 weeks
65-.02656 -.11825 (65*2π)/4918 weeks
66-.09262 -.06332 (66*2π)/4917 weeks
67-.093 -.06558 (67*2π)/4917 weeks
68.0366 -.06906 (68*2π)/4917 weeks
69-.08708 -.05634 (69*2π)/4917 weeks
70-.07457 -.10032 (70*2π)/4917 weeks
71.00094 -.07023 (71*2π)/4917 weeks
72-.0573 -.08348 (72*2π)/4917 weeks
73-.00125 -.04888 (73*2π)/4917 weeks
74-.02439 -.06624 (74*2π)/4917 weeks
75-.04432 -.08834 (75*2π)/4917 weeks
76-.01511 -.02594 (76*2π)/4916 weeks
77-.0081 -.04172 (77*2π)/4916 weeks
78-.01234 -.02441 (78*2π)/4916 weeks
79-.00182 -.07281 (79*2π)/4916 weeks
80-.03326 -.11391 (80*2π)/4916 weeks
81-.06186 -.08848 (81*2π)/4916 weeks
82-.0633 -.0878 (82*2π)/4916 weeks
83-.05872 -.06201 (83*2π)/4916 weeks
84-.0525 -.01834 (84*2π)/4916 weeks
85-.06672 -.05047 (85*2π)/4916 weeks
86-.03309 -.05691 (86*2π)/4916 weeks
87-.04099 -.04869 (87*2π)/4916 weeks
88-.01955 -.03374 (88*2π)/4916 weeks
89-.00362 -.05664 (89*2π)/4916 weeks
90-.04912 -.06126 (90*2π)/4915 weeks
91-.03958 -.02231 (91*2π)/4915 weeks
92-.04333 -.02739 (92*2π)/4915 weeks
93-.03311 -.03989 (93*2π)/4915 weeks
94-.03735 -.02058 (94*2π)/4915 weeks
95-.00542 -.07758 (95*2π)/4915 weeks
96-.06609 -.06843 (96*2π)/4915 weeks
97-.06577 -.0639 (97*2π)/4915 weeks
98-.0374 -.03777 (98*2π)/4915 weeks
99-.00369 -.04262 (99*2π)/4915 weeks
100-.0215 -.04456 (100*2π)/4915 weeks
101-.04729 -.06678 (101*2π)/4915 weeks
102-.01771 -.03136 (102*2π)/4915 weeks
103-.05693 -.00325 (103*2π)/4915 weeks
104-.04272 -.0098 (104*2π)/4915 weeks
105-.00742 -.00971 (105*2π)/4915 weeks
106-.00198 -.00822 (106*2π)/4915 weeks
107.00575 -.06123 (107*2π)/4915 weeks
108-.06628 -.05968 (108*2π)/4915 weeks
109-.03485 -.03755 (109*2π)/4915 weeks
110-.01492 -.05317 (110*2π)/4914 weeks
111-.027 -.01983 (111*2π)/4914 weeks
112-.01167 -.02672 (112*2π)/4914 weeks
113-.00905 -.04607 (113*2π)/4914 weeks
114-.04399 -.0495 (114*2π)/4914 weeks
115-.02023 -.03019 (115*2π)/4914 weeks
116-.023 -.04302 (116*2π)/4914 weeks
117-.05856 -.02047 (117*2π)/4914 weeks
118-.04327 -.02601 (118*2π)/4914 weeks
119-.01151 -.01746 (119*2π)/4914 weeks
120.01133 -.02479 (120*2π)/4914 weeks
121-.01084 -.0735 (121*2π)/4914 weeks
122-.02794 -.02531 (122*2π)/4914 weeks
123-.04085 -.00033 (123*2π)/4914 weeks
124-.02565 -.02841 (124*2π)/4914 weeks
125.01519 -.02915 (125*2π)/4914 weeks
126-.02276 -.07423 (126*2π)/4914 weeks
127-.01219 -.06298 (127*2π)/4914 weeks
128-.04827 -.03806 (128*2π)/4914 weeks
129-.07544 -.02655 (129*2π)/4914 weeks
130-.0454 -.00858 (130*2π)/4914 weeks
131-.02412 -.02581 (131*2π)/4914 weeks
132-.02259 -.04882 (132*2π)/4914 weeks
133-.04577 -.02322 (133*2π)/4914 weeks
134-.02497 -.02845 (134*2π)/4914 weeks
135-.02006 -.00131 (135*2π)/4914 weeks
136-.04645 -.00141 (136*2π)/4914 weeks
137.00372 -.02183 (137*2π)/4914 weeks
138-.01375 -.04195 (138*2π)/4914 weeks
139-.02641 -.04664 (139*2π)/4914 weeks
140-.03553 -.04446 (140*2π)/4914 weeks
141-.06197 -.00982 (141*2π)/4913 weeks
142-.0327 -.0434 (142*2π)/4913 weeks
143-.01461 -.02593 (143*2π)/4913 weeks
144-.0273 -.02451 (144*2π)/4913 weeks
145-.04407 -.03392 (145*2π)/4913 weeks
146-.04582 -.02673 (146*2π)/4913 weeks
147-.02774 -.00518 (147*2π)/4913 weeks
148-.02709 -.02022 (148*2π)/4913 weeks
149-.01523 -.0045 (149*2π)/4913 weeks
150-.0243 -.01538 (150*2π)/4913 weeks
151-.02825 -.01883 (151*2π)/4913 weeks
152-.04261 -.01419 (152*2π)/4913 weeks
153-.01879 -.01753 (153*2π)/4913 weeks
154-.01722 -.03741 (154*2π)/4913 weeks
155-.03891 -.04223 (155*2π)/4913 weeks
156-.04728 -.03251 (156*2π)/4913 weeks
157-.03282 -.00707 (157*2π)/4913 weeks
158-.01256 -.01921 (158*2π)/4913 weeks
159-.02404 -.03139 (159*2π)/4913 weeks
160-.0138 -.02404 (160*2π)/4913 weeks
161-.02394 -.04084 (161*2π)/4913 weeks
162-.04538 -.01866 (162*2π)/4913 weeks
163-.03457 .00569 (163*2π)/4913 weeks
164-.01446 -.02708 (164*2π)/4913 weeks
165-.02847 -.0301 (165*2π)/4913 weeks
166-.01732 -.03624 (166*2π)/4913 weeks
167-.0547 -.02084 (167*2π)/4913 weeks
168-.02013 -.02661 (168*2π)/4913 weeks
169-.01685 -.04654 (169*2π)/4913 weeks
170-.04377 -.01812 (170*2π)/4913 weeks
171-.02894 -.0235 (171*2π)/4913 weeks
172-.04381 -.00721 (172*2π)/4913 weeks
173-.02492 -.03546 (173*2π)/4913 weeks
174-.01776 -.02439 (174*2π)/4913 weeks
175-.07096 -.00398 (175*2π)/4913 weeks
176-.02639 -.00269 (176*2π)/4913 weeks
177-.03743 -.01766 (177*2π)/4913 weeks
178-.04473 -.01428 (178*2π)/4913 weeks
179-.01343 -.00367 (179*2π)/4913 weeks
180-.05914 -.01231 (180*2π)/4913 weeks
181-.00812 -.02342 (181*2π)/4913 weeks
182-.03149 -.00273 (182*2π)/4913 weeks
183-.04282 -.0299 (183*2π)/4913 weeks
184-.039 -.02144 (184*2π)/4913 weeks
185-.02303 -.01153 (185*2π)/4913 weeks
186-.03229 -.02401 (186*2π)/4913 weeks
187-.05123 -.00214 (187*2π)/4913 weeks
188-.04706 -.00074 (188*2π)/4913 weeks
189-.01659 .00139 (189*2π)/4913 weeks
190-.02422 -.01789 (190*2π)/4913 weeks
191-.05175 -.02851 (191*2π)/4913 weeks
192-.03959 -.01584 (192*2π)/4913 weeks
193-.03297 -.01516 (193*2π)/4913 weeks
194-.02269 -.00426 (194*2π)/4913 weeks
195-.0116 -.00005 (195*2π)/4913 weeks
196-.04513 -.01452 (196*2π)/4913 weeks
197-.04311 -.02864 (197*2π)/4912 weeks
198-.01876 -.00158 (198*2π)/4912 weeks
199-.03904 -.00038 (199*2π)/4912 weeks
200-.05371 -.01317 (200*2π)/4912 weeks
201-.00132 -.0024 (201*2π)/4912 weeks
202-.03644 -.01481 (202*2π)/4912 weeks
203-.03075 -.01221 (203*2π)/4912 weeks
204-.04771 .01695 (204*2π)/4912 weeks
205-.0123 .00552 (205*2π)/4912 weeks
206-.00854 -.03628 (206*2π)/4912 weeks
207-.03557 -.02041 (207*2π)/4912 weeks
208-.04281 -.02684 (208*2π)/4912 weeks
209-.03921 -.01265 (209*2π)/4912 weeks
210-.04281 -.03147 (210*2π)/4912 weeks
211-.02877 -.00996 (211*2π)/4912 weeks
212-.03497 -.01226 (212*2π)/4912 weeks
213-.05012 -.0454 (213*2π)/4912 weeks
214-.04054 .02497 (214*2π)/4912 weeks
215-.04472 -.00267 (215*2π)/4912 weeks
216-.02274 .0044 (216*2π)/4912 weeks
217-.0575 .00649 (217*2π)/4912 weeks
218-.02053 -.00177 (218*2π)/4912 weeks
219-.03405 .01607 (219*2π)/4912 weeks
220-.0308 .00944 (220*2π)/4912 weeks
221-.01553 -.01818 (221*2π)/4912 weeks
222-.05061 -.02066 (222*2π)/4912 weeks
223-.02125 -.00394 (223*2π)/4912 weeks
224-.01036 -.02219 (224*2π)/4912 weeks
225-.04326 -.00495 (225*2π)/4912 weeks
226-.02729 .00737 (226*2π)/4912 weeks
227-.00083 -.01155 (227*2π)/4912 weeks
228-.04299 -.01847 (228*2π)/4912 weeks
229-.01305 .00515 (229*2π)/4912 weeks
230-.03463 .00054 (230*2π)/4912 weeks
231-.04975 -.00228 (231*2π)/4912 weeks
232-.02695 .0209 (232*2π)/4912 weeks
233-.03167 -.0032 (233*2π)/4912 weeks
234-.04142 -.00609 (234*2π)/4912 weeks
235-.02088 -.01232 (235*2π)/4912 weeks
236-.01715 .0007 (236*2π)/4912 weeks
237-.0305 -.00687 (237*2π)/4912 weeks
238-.04279 -.01493 (238*2π)/4912 weeks
239-.01089 .00427 (239*2π)/4912 weeks
240-.01398 .00837 (240*2π)/4912 weeks
241-.02201 -.00395 (241*2π)/4912 weeks
242-.04912 -.02518 (242*2π)/4912 weeks
243-.05795 -.00098 (243*2π)/4912 weeks
244-.02842 -.00646 (244*2π)/4912 weeks
245-.05476 .01549 (245*2π)/4912 weeks
246-.05476 -.01549 (246*2π)/4912 weeks
247-.02842 .00646 (247*2π)/4912 weeks
248-.05795 .00098 (248*2π)/4912 weeks
249-.04912 .02518 (249*2π)/4912 weeks
250-.02201 .00395 (250*2π)/4912 weeks
251-.01398 -.00837 (251*2π)/4912 weeks
252-.01089 -.00427 (252*2π)/4912 weeks
253-.04279 .01493 (253*2π)/4912 weeks
254-.0305 .00687 (254*2π)/4912 weeks
255-.01715 -.0007 (255*2π)/4912 weeks
256-.02088 .01232 (256*2π)/4912 weeks
257-.04142 .00609 (257*2π)/4912 weeks
258-.03167 .0032 (258*2π)/4912 weeks
259-.02695 -.0209 (259*2π)/4912 weeks
260-.04975 .00228 (260*2π)/4912 weeks
261-.03463 -.00054 (261*2π)/4912 weeks
262-.01305 -.00515 (262*2π)/4912 weeks
263-.04299 .01847 (263*2π)/4912 weeks
264-.00083 .01155 (264*2π)/4912 weeks
265-.02729 -.00737 (265*2π)/4912 weeks
266-.04326 .00495 (266*2π)/4912 weeks
267-.01036 .02219 (267*2π)/4912 weeks
268-.02125 .00394 (268*2π)/4912 weeks
269-.05061 .02066 (269*2π)/4912 weeks
270-.01553 .01818 (270*2π)/4912 weeks
271-.0308 -.00944 (271*2π)/4912 weeks
272-.03405 -.01607 (272*2π)/4912 weeks
273-.02053 .00177 (273*2π)/4912 weeks
274-.0575 -.00649 (274*2π)/4912 weeks
275-.02274 -.0044 (275*2π)/4912 weeks
276-.04472 .00267 (276*2π)/4912 weeks
277-.04054 -.02497 (277*2π)/4912 weeks
278-.05012 .0454 (278*2π)/4912 weeks
279-.03497 .01226 (279*2π)/4912 weeks
280-.02877 .00996 (280*2π)/4912 weeks
281-.04281 .03147 (281*2π)/4912 weeks
282-.03921 .01265 (282*2π)/4912 weeks
283-.04281 .02684 (283*2π)/4912 weeks
284-.03557 .02041 (284*2π)/4912 weeks
285-.00854 .03628 (285*2π)/4912 weeks
286-.0123 -.00552 (286*2π)/4912 weeks
287-.04771 -.01695 (287*2π)/4912 weeks
288-.03075 .01221 (288*2π)/4912 weeks
289-.03644 .01481 (289*2π)/4912 weeks
290-.00132 .0024 (290*2π)/4912 weeks
291-.05371 .01317 (291*2π)/4912 weeks
292-.03904 .00038 (292*2π)/4912 weeks
293-.01876 .00158 (293*2π)/4912 weeks
294-.04311 .02864 (294*2π)/4912 weeks
295-.04513 .01452 (295*2π)/4912 weeks
296-.0116 .00005 (296*2π)/4912 weeks
297-.02269 .00426 (297*2π)/4912 weeks
298-.03297 .01516 (298*2π)/4912 weeks
299-.03959 .01584 (299*2π)/4912 weeks
300-.05175 .02851 (300*2π)/4912 weeks
301-.02422 .01789 (301*2π)/4912 weeks
302-.01659 -.00139 (302*2π)/4912 weeks
303-.04706 .00074 (303*2π)/4912 weeks
304-.05123 .00214 (304*2π)/4912 weeks
305-.03229 .02401 (305*2π)/4912 weeks
306-.02303 .01153 (306*2π)/4912 weeks
307-.039 .02144 (307*2π)/4912 weeks
308-.04282 .0299 (308*2π)/4912 weeks
309-.03149 .00273 (309*2π)/4912 weeks
310-.00812 .02342 (310*2π)/4912 weeks
311-.05914 .01231 (311*2π)/4912 weeks
312-.01343 .00367 (312*2π)/4912 weeks
313-.04473 .01428 (313*2π)/4912 weeks
314-.03743 .01766 (314*2π)/4912 weeks
315-.02639 .00269 (315*2π)/4912 weeks
316-.07096 .00398 (316*2π)/4912 weeks
317-.01776 .02439 (317*2π)/4912 weeks
318-.02492 .03546 (318*2π)/4912 weeks
319-.04381 .00721 (319*2π)/4912 weeks
320-.02894 .0235 (320*2π)/4912 weeks
321-.04377 .01812 (321*2π)/4912 weeks
322-.01685 .04654 (322*2π)/4912 weeks
323-.02013 .02661 (323*2π)/4912 weeks
324-.0547 .02084 (324*2π)/4912 weeks
325-.01732 .03624 (325*2π)/4912 weeks
326-.02847 .0301 (326*2π)/4912 weeks
327-.01446 .02708 (327*2π)/4912 weeks
328-.03457 -.00569 (328*2π)/4911 weeks
329-.04538 .01866 (329*2π)/4911 weeks
330-.02394 .04084 (330*2π)/4911 weeks
331-.0138 .02404 (331*2π)/4911 weeks
332-.02404 .03139 (332*2π)/4911 weeks
333-.01256 .01921 (333*2π)/4911 weeks
334-.03282 .00707 (334*2π)/4911 weeks
335-.04728 .03251 (335*2π)/4911 weeks
336-.03891 .04223 (336*2π)/4911 weeks
337-.01722 .03741 (337*2π)/4911 weeks
338-.01879 .01753 (338*2π)/4911 weeks
339-.04261 .01419 (339*2π)/4911 weeks
340-.02825 .01883 (340*2π)/4911 weeks
341-.0243 .01538 (341*2π)/4911 weeks
342-.01523 .0045 (342*2π)/4911 weeks
343-.02709 .02022 (343*2π)/4911 weeks
344-.02774 .00518 (344*2π)/4911 weeks
345-.04582 .02673 (345*2π)/4911 weeks
346-.04407 .03392 (346*2π)/4911 weeks
347-.0273 .02451 (347*2π)/4911 weeks
348-.01461 .02593 (348*2π)/4911 weeks
349-.0327 .0434 (349*2π)/4911 weeks
350-.06197 .00982 (350*2π)/4911 weeks
351-.03553 .04446 (351*2π)/4911 weeks
352-.02641 .04664 (352*2π)/4911 weeks
353-.01375 .04195 (353*2π)/4911 weeks
354.00372 .02183 (354*2π)/4911 weeks
355-.04645 .00141 (355*2π)/4911 weeks
356-.02006 .00131 (356*2π)/4911 weeks
357-.02497 .02845 (357*2π)/4911 weeks
358-.04577 .02322 (358*2π)/4911 weeks
359-.02259 .04882 (359*2π)/4911 weeks
360-.02412 .02581 (360*2π)/4911 weeks
361-.0454 .00858 (361*2π)/4911 weeks
362-.07544 .02655 (362*2π)/4911 weeks
363-.04827 .03806 (363*2π)/4911 weeks
364-.01219 .06298 (364*2π)/4911 weeks
365-.02276 .07423 (365*2π)/4911 weeks
366.01519 .02915 (366*2π)/4911 weeks
367-.02565 .02841 (367*2π)/4911 weeks
368-.04085 .00033 (368*2π)/4911 weeks
369-.02794 .02531 (369*2π)/4911 weeks
370-.01084 .0735 (370*2π)/4911 weeks
371.01133 .02479 (371*2π)/4911 weeks
372-.01151 .01746 (372*2π)/4911 weeks
373-.04327 .02601 (373*2π)/4911 weeks
374-.05856 .02047 (374*2π)/4911 weeks
375-.023 .04302 (375*2π)/4911 weeks
376-.02023 .03019 (376*2π)/4911 weeks
377-.04399 .0495 (377*2π)/4911 weeks
378-.00905 .04607 (378*2π)/4911 weeks
379-.01167 .02672 (379*2π)/4911 weeks
380-.027 .01983 (380*2π)/4911 weeks
381-.01492 .05317 (381*2π)/4911 weeks
382-.03485 .03755 (382*2π)/4911 weeks
383-.06628 .05968 (383*2π)/4911 weeks
384.00575 .06123 (384*2π)/4911 weeks
385-.00198 .00822 (385*2π)/4911 weeks
386-.00742 .00971 (386*2π)/4911 weeks
387-.04272 .0098 (387*2π)/4911 weeks
388-.05693 .00325 (388*2π)/4911 weeks
389-.01771 .03136 (389*2π)/4911 weeks
390-.04729 .06678 (390*2π)/4911 weeks
391-.0215 .04456 (391*2π)/4911 weeks
392-.00369 .04262 (392*2π)/4911 weeks
393-.0374 .03777 (393*2π)/4911 weeks
394-.06577 .0639 (394*2π)/4911 weeks
395-.06609 .06843 (395*2π)/4911 weeks
396-.00542 .07758 (396*2π)/4911 weeks
397-.03735 .02058 (397*2π)/4911 weeks
398-.03311 .03989 (398*2π)/4911 weeks
399-.04333 .02739 (399*2π)/4911 weeks
400-.03958 .02231 (400*2π)/4911 weeks
401-.04912 .06126 (401*2π)/4911 weeks
402-.00362 .05664 (402*2π)/4911 weeks
403-.01955 .03374 (403*2π)/4911 weeks
404-.04099 .04869 (404*2π)/4911 weeks
405-.03309 .05691 (405*2π)/4911 weeks
406-.06672 .05047 (406*2π)/4911 weeks
407-.0525 .01834 (407*2π)/4911 weeks
408-.05872 .06201 (408*2π)/4911 weeks
409-.0633 .0878 (409*2π)/4911 weeks
410-.06186 .08848 (410*2π)/4911 weeks
411-.03326 .11391 (411*2π)/4911 weeks
412-.00182 .07281 (412*2π)/4911 weeks
413-.01234 .02441 (413*2π)/4911 weeks
414-.0081 .04172 (414*2π)/4911 weeks
415-.01511 .02594 (415*2π)/4911 weeks
416-.04432 .08834 (416*2π)/4911 weeks
417-.02439 .06624 (417*2π)/4911 weeks
418-.00125 .04888 (418*2π)/4911 weeks
419-.0573 .08348 (419*2π)/4911 weeks
420.00094 .07023 (420*2π)/4911 weeks
421-.07457 .10032 (421*2π)/4911 weeks
422-.08708 .05634 (422*2π)/4911 weeks
423.0366 .06906 (423*2π)/4911 weeks
424-.093 .06558 (424*2π)/4911 weeks
425-.09262 .06332 (425*2π)/4911 weeks
426-.02656 .11825 (426*2π)/4911 weeks
427-.00495 .07104 (427*2π)/4911 weeks
428.04584 .04695 (428*2π)/4911 weeks
429.00782 .07527 (429*2π)/4911 weeks
430-.07418 .04031 (430*2π)/4911 weeks
431.03201 .08348 (431*2π)/4911 weeks
432-.08028 .02209 (432*2π)/4911 weeks
433-.07926 .11137 (433*2π)/4911 weeks
434.01841 .08887 (434*2π)/4911 weeks
435-.06386 .02505 (435*2π)/4911 weeks
436-.01693 .101 (436*2π)/4911 weeks
437-.0529 .14978 (437*2π)/4911 weeks
438.00096 .09228 (438*2π)/4911 weeks
439-.03939 .10281 (439*2π)/4911 weeks
440-.00615 .13646 (440*2π)/4911 weeks
441.02915 .01577 (441*2π)/4911 weeks
442.02269 .07745 (442*2π)/4911 weeks
443-.03966 .10325 (443*2π)/4911 weeks
444-.01512 .08497 (444*2π)/4911 weeks
445.00753 .09025 (445*2π)/4911 weeks
446-.09534 .05377 (446*2π)/4911 weeks
447-.03594 .17601 (447*2π)/4911 weeks
448.02177 .08556 (448*2π)/4911 weeks
449-.10892 .09119 (449*2π)/4911 weeks
450-.04574 .12532 (450*2π)/4911 weeks
451-.0224 .12025 (451*2π)/4911 weeks
452-.13773 .10079 (452*2π)/4911 weeks
453.07878 .24384 (453*2π)/4911 weeks
454-.01648 .14938 (454*2π)/4911 weeks
455-.0239 .03734 (455*2π)/4911 weeks
456-.00331 .10413 (456*2π)/4911 weeks
457-.00639 .14651 (457*2π)/4911 weeks
458-.01798 .08381 (458*2π)/4911 weeks
459-.01151 .19131 (459*2π)/4911 weeks
460-.01368 .12157 (460*2π)/4911 weeks
461.08109 .15156 (461*2π)/4911 weeks
462.03246 .21734 (462*2π)/4911 weeks
463-.03502 .08742 (463*2π)/4911 weeks
464-.20931 .28401 (464*2π)/4911 weeks
465-.11897 .36991 (465*2π)/4911 weeks
466.03702 .23522 (466*2π)/4911 weeks
467-.00341 .31091 (467*2π)/4911 weeks
468-.00035 .12676 (468*2π)/4911 weeks
469.07009 .18052 (469*2π)/4911 weeks
470-.08533 .13806 (470*2π)/4911 weeks
471.01168 .29865 (471*2π)/4911 weeks
472.08949 .24603 (472*2π)/4911 weeks
473-.02048 .26368 (473*2π)/4911 weeks
474.09687 .17842 (474*2π)/4911 weeks
475.09144 .35415 (475*2π)/4911 weeks
476-.21366 .28465 (476*2π)/4911 weeks
477.01448 .39046 (477*2π)/4911 weeks
478-.04888 .40002 (478*2π)/4911 weeks
479.00949 .49539 (479*2π)/4911 weeks
480-.05806 .64823 (480*2π)/4911 weeks
481-.29027 .36272 (481*2π)/4911 weeks
482.17543 .46929 (482*2π)/4911 weeks
483-.30804 .50741 (483*2π)/4911 weeks
484-.51342 .26775 (484*2π)/4911 weeks
485.24578 1.20858 (485*2π)/4911 weeks
486.69197 1.09045 (486*2π)/4911 weeks
487.29234 .91243 (487*2π)/4911 weeks
4881.3016 1.63203 (488*2π)/4911 weeks
489-.47413 1.99605 (489*2π)/4911 weeks



Back to list of Stocks