Back to list of Stocks    See Also: Seasonal Analysis of ATHMGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ATHM (Autohome Inc. American Deposita)


ATHM (Autohome Inc. American Deposita) appears to have interesting cyclic behaviour every 12 weeks (1.7153*cosine), 9 weeks (1.3537*sine), and 11 weeks (1.0533*sine).

ATHM (Autohome Inc. American Deposita) has an average price of 34.69 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/11/2013 to 11/28/2016 for ATHM (Autohome Inc. American Deposita), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
034.69474   0 
1-6.39279 7.41606 (1*2π)/156156 weeks
21.38042 .81356 (2*2π)/15678 weeks
3-1.10747 1.05824 (3*2π)/15652 weeks
42.89243 .66114 (4*2π)/15639 weeks
5-2.02503 2.98901 (5*2π)/15631 weeks
6-.13227 -1.59781 (6*2π)/15626 weeks
7-1.53795 -.21834 (7*2π)/15622 weeks
8-.19545 .71083 (8*2π)/15620 weeks
9.55417 -.30989 (9*2π)/15617 weeks
10.21125 .07717 (10*2π)/15616 weeks
11.00344 -.72861 (11*2π)/15614 weeks
12.17388 .55088 (12*2π)/15613 weeks
131.7153 -.26736 (13*2π)/15612 weeks
14-.33655 1.05327 (14*2π)/15611 weeks
15-.55103 .85632 (15*2π)/15610 weeks
16-.21952 -.18006 (16*2π)/15610 weeks
17.12193 .11508 (17*2π)/1569 weeks
18-.07627 1.35374 (18*2π)/1569 weeks
19-.18177 -.62377 (19*2π)/1568 weeks
20-.15581 -.40877 (20*2π)/1568 weeks
21-.19725 -.35341 (21*2π)/1567 weeks
22-.15191 -.18145 (22*2π)/1567 weeks
23-.18418 -.25843 (23*2π)/1567 weeks
24.01937 -.36944 (24*2π)/1567 weeks
25.18656 -.32078 (25*2π)/1566 weeks
26.02 -.07972 (26*2π)/1566 weeks
27.16013 .07233 (27*2π)/1566 weeks
28.26287 .34549 (28*2π)/1566 weeks
29-.29067 .05222 (29*2π)/1565 weeks
30-.4103 -.2442 (30*2π)/1565 weeks
31.26403 .0096 (31*2π)/1565 weeks
32-.18854 .20433 (32*2π)/1565 weeks
33-.46618 -.14062 (33*2π)/1565 weeks
34.03422 .13363 (34*2π)/1565 weeks
35.01621 .06086 (35*2π)/1564 weeks
36-.3177 .11862 (36*2π)/1564 weeks
37-.07188 -.22514 (37*2π)/1564 weeks
38.14132 -.20631 (38*2π)/1564 weeks
39-.15551 .19705 (39*2π)/1564 weeks
40-.05568 .1366 (40*2π)/1564 weeks
41.00188 -.13953 (41*2π)/1564 weeks
42-.07709 .29212 (42*2π)/1564 weeks
43-.14359 .1018 (43*2π)/1564 weeks
44.00197 -.00348 (44*2π)/1564 weeks
45-.22489 .18088 (45*2π)/1563 weeks
46-.32409 -.29049 (46*2π)/1563 weeks
47-.20056 -.25128 (47*2π)/1563 weeks
48.10309 -.01885 (48*2π)/1563 weeks
49-.11348 .00221 (49*2π)/1563 weeks
50.00852 -.11315 (50*2π)/1563 weeks
51-.03298 -.20472 (51*2π)/1563 weeks
52-.02897 -.3644 (52*2π)/1563 weeks
53.13294 -.03439 (53*2π)/1563 weeks
54.18642 .05517 (54*2π)/1563 weeks
55.06289 .03739 (55*2π)/1563 weeks
56.33234 -.18096 (56*2π)/1563 weeks
57-.11263 .19324 (57*2π)/1563 weeks
58.15188 -.28062 (58*2π)/1563 weeks
59.00077 .05525 (59*2π)/1563 weeks
60-.31334 -.18029 (60*2π)/1563 weeks
61.22643 -.33766 (61*2π)/1563 weeks
62.07672 .07465 (62*2π)/1563 weeks
63.1426 -.1886 (63*2π)/1562 weeks
64.27038 .12291 (64*2π)/1562 weeks
65.22752 -.03597 (65*2π)/1562 weeks
66.16758 -.11898 (66*2π)/1562 weeks
67.06501 .03866 (67*2π)/1562 weeks
68.40385 .02766 (68*2π)/1562 weeks
69-.0148 .17937 (69*2π)/1562 weeks
70.32509 .07506 (70*2π)/1562 weeks
71.2271 .09711 (71*2π)/1562 weeks
72-.25338 .33238 (72*2π)/1562 weeks
73-.16727 -.01683 (73*2π)/1562 weeks
74-.12436 -.20044 (74*2π)/1562 weeks
75.09752 -.07273 (75*2π)/1562 weeks
76-.20903 .10856 (76*2π)/1562 weeks
77.0005 -.22836 (77*2π)/1562 weeks
78.35385   (78*2π)/1562 weeks
79.0005 .22836 (79*2π)/1562 weeks
80-.20903 -.10856 (80*2π)/1562 weeks
81.09752 .07273 (81*2π)/1562 weeks
82-.12436 .20044 (82*2π)/1562 weeks
83-.16727 .01683 (83*2π)/1562 weeks
84-.25338 -.33238 (84*2π)/1562 weeks
85.2271 -.09711 (85*2π)/1562 weeks
86.32509 -.07506 (86*2π)/1562 weeks
87-.0148 -.17937 (87*2π)/1562 weeks
88.40385 -.02766 (88*2π)/1562 weeks
89.06501 -.03866 (89*2π)/1562 weeks
90.16758 .11898 (90*2π)/1562 weeks
91.22752 .03597 (91*2π)/1562 weeks
92.27038 -.12291 (92*2π)/1562 weeks
93.1426 .1886 (93*2π)/1562 weeks
94.07672 -.07465 (94*2π)/1562 weeks
95.22643 .33766 (95*2π)/1562 weeks
96-.31334 .18029 (96*2π)/1562 weeks
97.00077 -.05525 (97*2π)/1562 weeks
98.15188 .28062 (98*2π)/1562 weeks
99-.11263 -.19324 (99*2π)/1562 weeks
100.33234 .18096 (100*2π)/1562 weeks
101.06289 -.03739 (101*2π)/1562 weeks
102.18642 -.05517 (102*2π)/1562 weeks
103.13294 .03439 (103*2π)/1562 weeks
104-.02897 .3644 (104*2π)/1562 weeks
105-.03298 .20472 (105*2π)/1561 weeks
106.00852 .11315 (106*2π)/1561 weeks
107-.11348 -.00221 (107*2π)/1561 weeks
108.10309 .01885 (108*2π)/1561 weeks
109-.20056 .25128 (109*2π)/1561 weeks
110-.32409 .29049 (110*2π)/1561 weeks
111-.22489 -.18088 (111*2π)/1561 weeks
112.00197 .00348 (112*2π)/1561 weeks
113-.14359 -.1018 (113*2π)/1561 weeks
114-.07709 -.29212 (114*2π)/1561 weeks
115.00188 .13953 (115*2π)/1561 weeks
116-.05568 -.1366 (116*2π)/1561 weeks
117-.15551 -.19705 (117*2π)/1561 weeks
118.14132 .20631 (118*2π)/1561 weeks
119-.07188 .22514 (119*2π)/1561 weeks
120-.3177 -.11862 (120*2π)/1561 weeks
121.01621 -.06086 (121*2π)/1561 weeks
122.03422 -.13363 (122*2π)/1561 weeks
123-.46618 .14062 (123*2π)/1561 weeks
124-.18854 -.20433 (124*2π)/1561 weeks
125.26403 -.0096 (125*2π)/1561 weeks
126-.4103 .2442 (126*2π)/1561 weeks
127-.29067 -.05222 (127*2π)/1561 weeks
128.26287 -.34549 (128*2π)/1561 weeks
129.16013 -.07233 (129*2π)/1561 weeks
130.02 .07972 (130*2π)/1561 weeks
131.18656 .32078 (131*2π)/1561 weeks
132.01937 .36944 (132*2π)/1561 weeks
133-.18418 .25843 (133*2π)/1561 weeks
134-.15191 .18145 (134*2π)/1561 weeks
135-.19725 .35341 (135*2π)/1561 weeks
136-.15581 .40877 (136*2π)/1561 weeks
137-.18177 .62377 (137*2π)/1561 weeks
138-.07627 -1.35374 (138*2π)/1561 weeks
139.12193 -.11508 (139*2π)/1561 weeks
140-.21952 .18006 (140*2π)/1561 weeks
141-.55103 -.85632 (141*2π)/1561 weeks
142-.33655 -1.05327 (142*2π)/1561 weeks
1431.7153 .26736 (143*2π)/1561 weeks
144.17388 -.55088 (144*2π)/1561 weeks
145.00344 .72861 (145*2π)/1561 weeks
146.21125 -.07717 (146*2π)/1561 weeks
147.55417 .30989 (147*2π)/1561 weeks
148-.19545 -.71083 (148*2π)/1561 weeks
149-1.53795 .21834 (149*2π)/1561 weeks
150-.13227 1.59781 (150*2π)/1561 weeks
151-2.02503 -2.98901 (151*2π)/1561 weeks
1522.89243 -.66114 (152*2π)/1561 weeks
153-1.10747 -1.05824 (153*2π)/1561 weeks
1541.38042 -.81356 (154*2π)/1561 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.