Back to list of Stocks    See Also: Seasonal Analysis of APOGGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of APOG (Apogee Enterprises, Inc.)


APOG (Apogee Enterprises, Inc.) appears to have interesting cyclic behaviour every 229 weeks (1.9403*sine), 190 weeks (1.4288*sine), and 208 weeks (.8489*sine).

APOG (Apogee Enterprises, Inc.) has an average price of 9.15 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 5/3/1973 to 2/13/2017 for APOG (Apogee Enterprises, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09.15255   0 
15.08564 -6.91855 (1*2π)/22852,285 weeks
23.78974 -4.73358 (2*2π)/22851,143 weeks
32.69355 -4.31198 (3*2π)/2285762 weeks
43.11831 -3.62105 (4*2π)/2285571 weeks
51.59162 -5.50155 (5*2π)/2285457 weeks
6-.10262 -3.28208 (6*2π)/2285381 weeks
7-.51576 -3.55005 (7*2π)/2285326 weeks
8-.80947 -1.47287 (8*2π)/2285286 weeks
9.4535 -1.99224 (9*2π)/2285254 weeks
10-.7117 -1.9403 (10*2π)/2285229 weeks
11-.14236 -.84888 (11*2π)/2285208 weeks
12-.32132 -1.42881 (12*2π)/2285190 weeks
13.06953 -.75784 (13*2π)/2285176 weeks
14.16751 -1.0686 (14*2π)/2285163 weeks
15-.08451 -1.2858 (15*2π)/2285152 weeks
16-.76169 -1.04631 (16*2π)/2285143 weeks
17-.12253 -.08032 (17*2π)/2285134 weeks
18.11505 -.54069 (18*2π)/2285127 weeks
19.04282 -.26948 (19*2π)/2285120 weeks
20.36841 -.69632 (20*2π)/2285114 weeks
21-.15027 -.44784 (21*2π)/2285109 weeks
22.39422 -.10802 (22*2π)/2285104 weeks
23.59909 -.50302 (23*2π)/228599 weeks
24.49797 -.72181 (24*2π)/228595 weeks
25.19847 -.70253 (25*2π)/228591 weeks
26.27663 -.67999 (26*2π)/228588 weeks
27.36778 -.64365 (27*2π)/228585 weeks
28.22856 -.7264 (28*2π)/228582 weeks
29.14526 -.63763 (29*2π)/228579 weeks
30.35781 -.74867 (30*2π)/228576 weeks
31.13179 -.7283 (31*2π)/228574 weeks
32.15893 -.93374 (32*2π)/228571 weeks
33-.26842 -.83036 (33*2π)/228569 weeks
34-.15696 -.47853 (34*2π)/228567 weeks
35-.05553 -.38609 (35*2π)/228565 weeks
36.16556 -.48163 (36*2π)/228563 weeks
37-.06961 -.76088 (37*2π)/228562 weeks
38-.21682 -.45003 (38*2π)/228560 weeks
39-.20845 -.36399 (39*2π)/228559 weeks
40.10355 -.31181 (40*2π)/228557 weeks
41.04107 -.4147 (41*2π)/228556 weeks
42-.10184 -.34429 (42*2π)/228554 weeks
43.00025 -.45118 (43*2π)/228553 weeks
44-.06766 -.25339 (44*2π)/228552 weeks
45.18482 -.34322 (45*2π)/228551 weeks
46-.02234 -.58666 (46*2π)/228550 weeks
47-.11447 -.41761 (47*2π)/228549 weeks
48-.40931 -.40636 (48*2π)/228548 weeks
49-.23534 .08114 (49*2π)/228547 weeks
50.12324 -.01063 (50*2π)/228546 weeks
51.17061 -.08892 (51*2π)/228545 weeks
52.17632 -.29631 (52*2π)/228544 weeks
53-.04834 -.24414 (53*2π)/228543 weeks
54.23514 -.03118 (54*2π)/228542 weeks
55.21707 -.30548 (55*2π)/228542 weeks
56.26438 -.22039 (56*2π)/228541 weeks
57.21562 -.51957 (57*2π)/228540 weeks
58-.00489 -.35934 (58*2π)/228539 weeks
59.11708 -.35292 (59*2π)/228539 weeks
60.05785 -.27633 (60*2π)/228538 weeks
61.18288 -.44556 (61*2π)/228537 weeks
62-.17723 -.40012 (62*2π)/228537 weeks
63-.02447 -.252 (63*2π)/228536 weeks
64.01103 -.23384 (64*2π)/228536 weeks
65.07398 -.17085 (65*2π)/228535 weeks
66.04293 -.31933 (66*2π)/228535 weeks
67.05662 -.20067 (67*2π)/228534 weeks
68.05217 -.2775 (68*2π)/228534 weeks
69.04453 -.22209 (69*2π)/228533 weeks
70.17126 -.22823 (70*2π)/228533 weeks
71.03485 -.27872 (71*2π)/228532 weeks
72.1773 -.30879 (72*2π)/228532 weeks
73-.03577 -.40448 (73*2π)/228531 weeks
74.03741 -.14103 (74*2π)/228531 weeks
75.09783 -.28673 (75*2π)/228530 weeks
76.06494 -.26774 (76*2π)/228530 weeks
77.16694 -.2941 (77*2π)/228530 weeks
78.02644 -.37732 (78*2π)/228529 weeks
79.04209 -.31757 (79*2π)/228529 weeks
80.00734 -.35238 (80*2π)/228529 weeks
81.00048 -.31172 (81*2π)/228528 weeks
82-.01614 -.35403 (82*2π)/228528 weeks
83-.07623 -.24316 (83*2π)/228528 weeks
84.02484 -.27293 (84*2π)/228527 weeks
85-.08534 -.34082 (85*2π)/228527 weeks
86-.00899 -.2295 (86*2π)/228527 weeks
87-.08517 -.29769 (87*2π)/228526 weeks
88-.1275 -.18524 (88*2π)/228526 weeks
89-.00288 -.21528 (89*2π)/228526 weeks
90-.09817 -.18917 (90*2π)/228525 weeks
91-.03235 -.12584 (91*2π)/228525 weeks
92.00745 -.17586 (92*2π)/228525 weeks
93.0142 -.14973 (93*2π)/228525 weeks
94.00259 -.15833 (94*2π)/228524 weeks
95.09066 -.16502 (95*2π)/228524 weeks
96-.00669 -.26216 (96*2π)/228524 weeks
97-.00445 -.13066 (97*2π)/228524 weeks
98.09595 -.14042 (98*2π)/228523 weeks
99.09563 -.22398 (99*2π)/228523 weeks
100.07808 -.25133 (100*2π)/228523 weeks
101.05683 -.25835 (101*2π)/228523 weeks
102.01586 -.29388 (102*2π)/228522 weeks
103-.00983 -.20097 (103*2π)/228522 weeks
104.1125 -.30808 (104*2π)/228522 weeks
105-.07396 -.34833 (105*2π)/228522 weeks
106-.07402 -.1854 (106*2π)/228522 weeks
107-.0144 -.26091 (107*2π)/228521 weeks
108-.04152 -.19377 (108*2π)/228521 weeks
109.01629 -.22253 (109*2π)/228521 weeks
110-.03565 -.29675 (110*2π)/228521 weeks
111-.09871 -.21276 (111*2π)/228521 weeks
112-.0214 -.19919 (112*2π)/228520 weeks
113-.01343 -.19972 (113*2π)/228520 weeks
114-.03624 -.26094 (114*2π)/228520 weeks
115-.0478 -.26521 (115*2π)/228520 weeks
116-.12185 -.25594 (116*2π)/228520 weeks
117-.15173 -.14864 (117*2π)/228520 weeks
118-.00213 -.13756 (118*2π)/228519 weeks
119-.08068 -.2375 (119*2π)/228519 weeks
120-.08504 -.13923 (120*2π)/228519 weeks
121-.05921 -.23956 (121*2π)/228519 weeks
122-.13114 -.15036 (122*2π)/228519 weeks
123-.06817 -.10782 (123*2π)/228519 weeks
124-.04985 -.15314 (124*2π)/228518 weeks
125-.03403 -.19488 (125*2π)/228518 weeks
126-.16225 -.18261 (126*2π)/228518 weeks
127-.10451 -.09042 (127*2π)/228518 weeks
128-.11173 -.09649 (128*2π)/228518 weeks
129-.01609 -.02514 (129*2π)/228518 weeks
130-.01779 -.17702 (130*2π)/228518 weeks
131-.09255 -.0772 (131*2π)/228517 weeks
132-.01358 -.1383 (132*2π)/228517 weeks
133-.11952 -.04447 (133*2π)/228517 weeks
134.05971 -.05553 (134*2π)/228517 weeks
135.01448 -.1431 (135*2π)/228517 weeks
136.00195 -.13076 (136*2π)/228517 weeks
137-.06832 -.17584 (137*2π)/228517 weeks
138-.05104 -.04568 (138*2π)/228517 weeks
139.03815 -.08558 (139*2π)/228516 weeks
140.05114 -.14531 (140*2π)/228516 weeks
141-.03121 -.21101 (141*2π)/228516 weeks
142-.10239 -.1274 (142*2π)/228516 weeks
143-.02895 -.08112 (143*2π)/228516 weeks
144-.054 -.0811 (144*2π)/228516 weeks
145.05119 -.0664 (145*2π)/228516 weeks
146.0296 -.14074 (146*2π)/228516 weeks
147-.00089 -.15099 (147*2π)/228516 weeks
148-.05123 -.11858 (148*2π)/228515 weeks
149.05122 -.06989 (149*2π)/228515 weeks
150.06905 -.20065 (150*2π)/228515 weeks
151-.01311 -.20022 (151*2π)/228515 weeks
152-.03798 -.20627 (152*2π)/228515 weeks
153-.0999 -.14538 (153*2π)/228515 weeks
154-.03465 -.11437 (154*2π)/228515 weeks
155-.01773 -.13724 (155*2π)/228515 weeks
156-.01646 -.19394 (156*2π)/228515 weeks
157-.10429 -.17654 (157*2π)/228515 weeks
158-.11468 -.11961 (158*2π)/228514 weeks
159-.07132 -.09748 (159*2π)/228514 weeks
160-.07351 -.10067 (160*2π)/228514 weeks
161-.07454 -.10705 (161*2π)/228514 weeks
162-.07753 -.06586 (162*2π)/228514 weeks
163-.08461 -.0794 (163*2π)/228514 weeks
164-.0361 -.01367 (164*2π)/228514 weeks
165.03198 -.0629 (165*2π)/228514 weeks
166-.03269 -.13068 (166*2π)/228514 weeks
167-.0535 -.09322 (167*2π)/228514 weeks
168-.05813 -.04263 (168*2π)/228514 weeks
169.01151 -.04336 (169*2π)/228514 weeks
170.00291 -.09006 (170*2π)/228513 weeks
171.00283 -.06656 (171*2π)/228513 weeks
172.00817 -.09225 (172*2π)/228513 weeks
173-.00367 -.10316 (173*2π)/228513 weeks
174.01227 -.09387 (174*2π)/228513 weeks
175.00272 -.11566 (175*2π)/228513 weeks
176-.02033 -.09859 (176*2π)/228513 weeks
177-.01518 -.09531 (177*2π)/228513 weeks
178.00243 -.09197 (178*2π)/228513 weeks
179.01705 -.10855 (179*2π)/228513 weeks
180.0249 -.13023 (180*2π)/228513 weeks
181-.04554 -.16224 (181*2π)/228513 weeks
182-.01181 -.11901 (182*2π)/228513 weeks
183-.07144 -.13908 (183*2π)/228512 weeks
184-.06722 -.10195 (184*2π)/228512 weeks
185-.07462 -.08945 (185*2π)/228512 weeks
186-.04513 -.04146 (186*2π)/228512 weeks
187-.01726 -.0827 (187*2π)/228512 weeks
188-.05656 -.0224 (188*2π)/228512 weeks
189.0333 -.07057 (189*2π)/228512 weeks
190-.02119 -.07172 (190*2π)/228512 weeks
191.05439 -.07637 (191*2π)/228512 weeks
192-.02558 -.14852 (192*2π)/228512 weeks
193-.04533 -.05801 (193*2π)/228512 weeks
194-.00511 -.07032 (194*2π)/228512 weeks
195.02468 -.02992 (195*2π)/228512 weeks
196.05479 -.12147 (196*2π)/228512 weeks
197.00405 -.1431 (197*2π)/228512 weeks
198-.01912 -.11176 (198*2π)/228512 weeks
199-.01662 -.09141 (199*2π)/228511 weeks
200.04027 -.09668 (200*2π)/228511 weeks
201.00787 -.16752 (201*2π)/228511 weeks
202-.0448 -.15009 (202*2π)/228511 weeks
203-.06239 -.1289 (203*2π)/228511 weeks
204-.06846 -.09773 (204*2π)/228511 weeks
205-.04726 -.07889 (205*2π)/228511 weeks
206-.04857 -.0844 (206*2π)/228511 weeks
207-.03893 -.0592 (207*2π)/228511 weeks
208-.00507 -.04657 (208*2π)/228511 weeks
209-.00769 -.09454 (209*2π)/228511 weeks
210.00457 -.07165 (210*2π)/228511 weeks
211.02482 -.10101 (211*2π)/228511 weeks
212-.02307 -.13775 (212*2π)/228511 weeks
213-.04562 -.09146 (213*2π)/228511 weeks
214.03208 -.09242 (214*2π)/228511 weeks
215-.05688 -.15222 (215*2π)/228511 weeks
216-.04957 -.09383 (216*2π)/228511 weeks
217-.04606 -.0937 (217*2π)/228511 weeks
218-.01708 -.05151 (218*2π)/228510 weeks
219-.00445 -.13151 (219*2π)/228510 weeks
220-.05746 -.12168 (220*2π)/228510 weeks
221-.03826 -.0837 (221*2π)/228510 weeks
222-.04441 -.10124 (222*2π)/228510 weeks
223-.05422 -.10954 (223*2π)/228510 weeks
224-.08992 -.11179 (224*2π)/228510 weeks
225-.09325 -.03643 (225*2π)/228510 weeks
226-.06977 -.03986 <