Back to list of Stocks    See Also: Seasonal Analysis of APOGGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

# Fourier Analysis of APOG (Apogee Enterprises, Inc.)

APOG (Apogee Enterprises, Inc.) appears to have interesting cyclic behaviour every 229 weeks (1.8843*sine), 191 weeks (1.4058*sine), and 208 weeks (.8323*sine).

APOG (Apogee Enterprises, Inc.) has an average price of 9.24 (topmost row, frequency = 0).

Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

## Fourier Analysis

Using data from 5/3/1973 to 3/13/2017 for APOG (Apogee Enterprises, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
09.23816   0
15.21171 -6.97613 (1*2π)/22892,289 weeks
23.88634 -4.81443 (2*2π)/22891,145 weeks
32.75753 -4.40121 (3*2π)/2289763 weeks
43.14901 -3.74225 (4*2π)/2289572 weeks
51.52183 -5.57582 (5*2π)/2289458 weeks
6-.13196 -3.28413 (6*2π)/2289382 weeks
7-.5584 -3.51728 (7*2π)/2289327 weeks
8-.75662 -1.4248 (8*2π)/2289286 weeks
9.46723 -2.01471 (9*2π)/2289254 weeks
10-.7053 -1.88433 (10*2π)/2289229 weeks
11-.06726 -.83231 (11*2π)/2289208 weeks
12-.28416 -1.40584 (12*2π)/2289191 weeks
13.14842 -.76527 (13*2π)/2289176 weeks
14.20335 -1.09395 (14*2π)/2289164 weeks
15-.08205 -1.27417 (15*2π)/2289153 weeks
16-.71413 -.95191 (16*2π)/2289143 weeks
17.03383 -.06525 (17*2π)/2289135 weeks
18.21541 -.57208 (18*2π)/2289127 weeks
19.16589 -.30766 (19*2π)/2289120 weeks
20.42952 -.77057 (20*2π)/2289114 weeks
21-.053 -.45742 (21*2π)/2289109 weeks
22.53599 -.21319 (22*2π)/2289104 weeks
23.65862 -.65473 (23*2π)/2289100 weeks
24.49883 -.85012 (24*2π)/228995 weeks
25.19822 -.7806 (25*2π)/228992 weeks
26.28153 -.76653 (26*2π)/228988 weeks
27.36161 -.74437 (27*2π)/228985 weeks
28.19771 -.80192 (28*2π)/228982 weeks
29.13046 -.70184 (29*2π)/228979 weeks
30.30668 -.84385 (30*2π)/228976 weeks
31.06829 -.7796 (31*2π)/228974 weeks
32.04806 -.96584 (32*2π)/228972 weeks
33-.34026 -.75534 (33*2π)/228969 weeks
34-.13649 -.43111 (34*2π)/228967 weeks
35-.0155 -.3855 (35*2π)/228965 weeks
36.15973 -.53651 (36*2π)/228964 weeks
37-.14109 -.73741 (37*2π)/228962 weeks
38-.20159 -.38452 (38*2π)/228960 weeks
39-.14948 -.31944 (39*2π)/228959 weeks
40.15971 -.35072 (40*2π)/228957 weeks
41.05012 -.43701 (41*2π)/228956 weeks
42-.07021 -.33787 (42*2π)/228955 weeks
43.01065 -.46119 (43*2π)/228953 weeks
44-.00558 -.25806 (44*2π)/228952 weeks
45.19585 -.42194 (45*2π)/228951 weeks
46-.08533 -.57817 (46*2π)/228950 weeks
47-.1229 -.3609 (47*2π)/228949 weeks
48-.35993 -.26131 (48*2π)/228948 weeks
49-.01323 .12681 (49*2π)/228947 weeks
50.2906 -.11426 (50*2π)/228946 weeks
51.27395 -.22134 (51*2π)/228945 weeks
52.19562 -.41158 (52*2π)/228944 weeks
53.01121 -.28256 (53*2π)/228943 weeks
54.34127 -.1895 (54*2π)/228942 weeks
55.2104 -.45712 (55*2π)/228942 weeks
56.25656 -.38585 (56*2π)/228941 weeks
57.095 -.63102 (57*2π)/228940 weeks
58-.0499 -.38282 (58*2π)/228939 weeks
59.07776 -.41788 (59*2π)/228939 weeks
60.03753 -.33411 (60*2π)/228938 weeks
61.0798 -.52059 (61*2π)/228938 weeks
62-.22584 -.33243 (62*2π)/228937 weeks
63.00399 -.25537 (63*2π)/228936 weeks
64.03931 -.26455 (64*2π)/228936 weeks
65.10553 -.24444 (65*2π)/228935 weeks
66.01647 -.37104 (66*2π)/228935 weeks
67.07099 -.26251 (67*2π)/228934 weeks
68.0346 -.3379 (68*2π)/228934 weeks
69.05174 -.28581 (69*2π)/228933 weeks
70.14651 -.34442 (70*2π)/228933 weeks
71-.0094 -.33986 (71*2π)/228932 weeks
72.09952 -.41242 (72*2π)/228932 weeks
73-.12664 -.38952 (73*2π)/228931 weeks
74.06206 -.19077 (74*2π)/228931 weeks
75.04087 -.3684 (75*2π)/228931 weeks
76.01286 -.33118 (76*2π)/228930 weeks
77.0735 -.39214 (77*2π)/228930 weeks
78-.09694 -.3904 (78*2π)/228929 weeks
79-.04762 -.33258 (79*2π)/228929 weeks
80-.09253 -.34293 (80*2π)/228929 weeks
81-.07711 -.29737 (81*2π)/228928 weeks
82-.10605 -.31731 (82*2π)/228928 weeks
83-.09932 -.19624 (83*2π)/228928 weeks
84-.02997 -.27877 (84*2π)/228927 weeks
85-.15268 -.27498 (85*2π)/228927 weeks
86-.02821 -.2069 (86*2π)/228927 weeks
87-.1278 -.22927 (87*2π)/228926 weeks
88-.08929 -.12107 (88*2π)/228926 weeks
89.0034 -.21632 (89*2π)/228926 weeks
90-.0676 -.14741 (90*2π)/228925 weeks
91.02578 -.14452 (91*2π)/228925 weeks
92.0239 -.21525 (92*2π)/228925 weeks
93.03221 -.19512 (93*2π)/228925 weeks
94.01306 -.20664 (94*2π)/228924 weeks
95.06668 -.25659 (95*2π)/228924 weeks
96-.06738 -.27322 (96*2π)/228924 weeks
97.01839 -.16807 (97*2π)/228924 weeks
98.07621 -.25053 (98*2π)/228923 weeks
99.00617 -.31265 (99*2π)/228923 weeks
100-.03083 -.30655 (100*2π)/228923 weeks
101-.05656 -.2872 (101*2π)/228923 weeks
102-.1019 -.28042 (102*2π)/228922 weeks
103-.0659 -.19819 (103*2π)/228922 weeks
104-.04254 -.34243 (104*2π)/228922 weeks
105-.20696 -.23423 (105*2π)/228922 weeks
106-.08687 -.11599 (106*2π)/228922 weeks
107-.08228 -.225 (107*2π)/228921 weeks
108-.06975 -.15364 (108*2π)/228921 weeks
109-.0533 -.21585 (109*2π)/228921 weeks
110-.13757 -.2236 (110*2π)/228921 weeks
111-.11695 -.11866 (111*2π)/228921 weeks
112-.04609 -.16793 (112*2π)/228920 weeks
113-.06047 -.17206 (113*2π)/228920 weeks
114-.11799 -.19707 (114*2π)/228920 weeks
115-.12029 -.17175 (115*2π)/228920 weeks
116-.15132 -.10953 (116*2π)/228920 weeks
117-.08384 -.03384 (117*2π)/228920 weeks
118.01814 -.13764 (118*2π)/228919 weeks
119-.11688 -.15037 (119*2π)/228919 weeks
120-.04863 -.07399 (120*2π)/228919 weeks
121-.08882 -.16249 (121*2π)/228919 weeks
122-.07094 -.04334 (122*2π)/228919 weeks
123.00019 -.07791 (123*2π)/228919 weeks
124-.03217 -.12799 (124*2π)/228918 weeks
125-.05194 -.14478 (125*2π)/228918 weeks
126-.11428 -.04582 (126*2π)/228918 weeks
127.00961 -.03778 (127*2π)/228918 weeks
128-.00285 -.06159 (128*2π)/228918 weeks
129.08948 -.08997 (129*2π)/228918 weeks
130-.03237 -.1839 (130*2π)/228918 weeks
131-.00739 -.0549 (131*2π)/228917 weeks
132.01156 -.15656 (132*2π)/228917 weeks
133.00251 -.03324 (133*2π)/228917 weeks
134.10113 -.18589 (134*2π)/228917 weeks
135-.02146 -.18948 (135*2π)/228917 weeks
136-.0184 -.15199 (136*2π)/228917 weeks
137-.07554 -.1295 (137*2π)/228917 weeks
138.03951 -.07233 (138*2π)/228917 weeks
139.04103 -.18117 (139*2π)/228916 weeks
140-.0195 -.20211 (140*2π)/228916 weeks
141-.10534 -.15607 (141*2π)/228916 weeks
142-.05491 -.05647 (142*2π)/228916 weeks
143.02938 -.1049 (143*2π)/228916 weeks
144.00007 -.10639 (144*2π)/228916 weeks
145.0584 -.17675 (145*2π)/228916 weeks
146-.03584 -.18885 (146*2π)/228916 weeks
147-.0525 -.15318 (147*2π)/228916 weeks
148-.04505 -.1072 (148*2π)/228915 weeks
149.03581 -.1672 (149*2π)/228915 weeks
150-.07858 -.23273 (150*2π)/228915 weeks
151-.11374 -.13321 (151*2π)/228915 weeks
152-.10512 -.11037 (152*2π)/228915 weeks
153-.0752 -.04143 (153*2π)/228915 weeks
154-.01265 -.09631 (154*2π)/228915 weeks
155-.04076 -.11989 (155*2π)/228915 weeks
156-.08107 -.12916 (156*2π)/228915 weeks
157-.09446 -.03957 (157*2π)/228915 weeks
158-.03194 -.02375 (158*2π)/228914 weeks
159.00685 -.06305 (159*2π)/228914 weeks
160-.00677 -.06789 (160*2π)/228914 weeks
161-.00732 -.073 (161*2π)/228914 weeks
162.02181 -.05562 (162*2π)/228914 weeks
163.00963 -.07699 (163*2π)/228914 weeks
164.07494 -.0933 (164*2π)/228914 weeks
165.0346 -.16677 (165*2π)/228914 weeks
166-.05309 -.12626 (166*2π)/228914 weeks
167-.00618 -.08663 (167*2π)/228914 weeks
168.03031 -.08005 (168*2π)/228914 weeks
169.04448 -.14773 (169*2π)/228914 weeks
170-.01233 -.1512 (170*2π)/228913 weeks
171.00408 -.13063 (171*2π)/228913 weeks
172-.02154 -.14616 (172*2π)/228913 weeks
173-.03197 -.13494 (173*2π)/228913 weeks
174-.01688 -.13667 (174*2π)/228913 weeks
175-.04139 -.13045 (175*2π)/228913 weeks
176-.03338 -.10264 (176*2π)/228913 weeks
177-.02709 -.11502 (177*2π)/228913 weeks
178-.02208 -.12846 (178*2π)/228913 weeks
179-.03806 -.13902 (179*2π)/228913 weeks
180-.05699 -.1332 (180*2π)/228913 weeks
181-.09695 -.08205 (181*2π)/228913 weeks
182-.02681 -.08715 (182*2π)/228913 weeks
183-.06686 -.05197 (183*2π)/228913 weeks
184-.01399 -.05469 (184*2π)/228912 weeks
185-.0041 -.06139 (185*2π)/228912 weeks
186.03726 -.08132 (186*2π)/228912 weeks
187.00032 -.12191 (187*2π)/228912 weeks
188.02229 -.07217 (188*2π)/228912 weeks
189.00382 -.17344 (189*2π)/228912 weeks
190-.0291 -.11002 (190*2π)/228912 weeks
191-.00898 -.16379 (191*2π)/228912 weeks
192-.09307 -.10217 (192*2π)/228912 weeks
193.0012 -.06514 (193*2π)/228912 weeks
194-.00744 -.12777 (194*2π)/228912 weeks
195.00804 -.13199 (195*2π)/228912 weeks
196-.07773 -.17265 (196*2π)/228912 weeks
197-.09124 -.10454 (197*2π)/228912 weeks
198-.05263 -.07744 (198*2π)/228912 weeks
199-.03751 -.08927 (199*2π)/228912 weeks
200-.0394 -.13058 (200*2π)/228911 weeks
201-.1094 -.09754 (201*2π)/228911 weeks
202-.07768 -.038 (202*2π)/228911 weeks
203-.04475 -.03495 (203*2π)/228911 weeks
204-.01465 -.04048 (204*2π)/228911 weeks
205.00007 -.06768 (205*2π)/228911 weeks
206-.0125 -.07503 (206*2π)/228911 weeks
207.00659 -.0832 (207*2π)/228911 weeks
208.00359 -.11006 (208*2π)/228911 weeks
209-.04862 -.11438 (209*2π)/228911 weeks
210-.02341 -.10578 (210*2π)/228911 weeks
211-.05472 -.11506 (211*2π)/228911 weeks
212-.08395 -.06927 (212*2π)/228911 weeks
213-.0309 -.05178 (213*2π)/228911 weeks
214-.02511 -.1129 (214*2π)/228911 weeks
215-.09529 -.03667 (215*2π)/228911 weeks
216-.01114 -.04528 (216*2π)/228911 weeks
217-.01915 -.06303 (217*2π)/228911 weeks
218.00441 -.07798 (218*2π)/228911 weeks
219-.07151 -.09515 (219*2π)/228910 weeks
220-.04585 -.03408 (220*2π)/228910 weeks
221-.00275 -.05427 (221*2π)/228910 weeks
222-.02935 -.05427 (222*2π)/228910 weeks
223-.02628 -.04635 (223*2π)/228910 weeks
224-.01356 -.02723 (224*2π)/228910 weeks
225.05265 -.03597 (225*2π)/228910 weeks
226.02992 -.08593 (226*2π)/228910 weeks
227.04194 -.11399 (227*2π)/228910 weeks
228-.01788 -.12751 (228*2π)/228910 weeks
229-.02996 -.07603 (229*2π)/228910 weeks
230.03725 -.08723 (230*2π)/2289