Back to list of Stocks    See Also: Seasonal Analysis of ANCFXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ANCFX (Fundamental Investors, Class A )


ANCFX (Fundamental Investors, Class A ) appears to have interesting cyclic behaviour every 149 weeks (1.5996*sine), 161 weeks (1.4289*sine), and 194 weeks (1.2898*sine).

ANCFX (Fundamental Investors, Class A ) has an average price of 15.68 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1980 to 2/13/2017 for ANCFX (Fundamental Investors, Class A ), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
015.68359   0 
15.28721 -13.59783 (1*2π)/19371,937 weeks
22.84979 -6.18525 (2*2π)/1937969 weeks
31.28263 -5.43133 (3*2π)/1937646 weeks
41.96925 -4.83043 (4*2π)/1937484 weeks
5-.64223 -4.88508 (5*2π)/1937387 weeks
6-.53822 -1.97506 (6*2π)/1937323 weeks
7.49773 -2.30268 (7*2π)/1937277 weeks
8-.04097 -2.34259 (8*2π)/1937242 weeks
9-.2357 -1.9749 (9*2π)/1937215 weeks
10-.59312 -1.28982 (10*2π)/1937194 weeks
11.47904 -.60524 (11*2π)/1937176 weeks
12.75179 -1.42894 (12*2π)/1937161 weeks
13.04403 -1.59962 (13*2π)/1937149 weeks
14-.21214 -1.24014 (14*2π)/1937138 weeks
15.03188 -.85052 (15*2π)/1937129 weeks
16.27181 -.92854 (16*2π)/1937121 weeks
17.22264 -1.07084 (17*2π)/1937114 weeks
18-.1482 -1.22647 (18*2π)/1937108 weeks
19.00455 -.63394 (19*2π)/1937102 weeks
20.32159 -.7845 (20*2π)/193797 weeks
21.20411 -1.03393 (21*2π)/193792 weeks
22-.04618 -.93832 (22*2π)/193788 weeks
23-.08454 -.82009 (23*2π)/193784 weeks
24-.0378 -.54026 (24*2π)/193781 weeks
25.31898 -.67518 (25*2π)/193777 weeks
26.08212 -.94447 (26*2π)/193775 weeks
27-.12691 -.82646 (27*2π)/193772 weeks
28-.25987 -.71402 (28*2π)/193769 weeks
29-.10235 -.39737 (29*2π)/193767 weeks
30.17546 -.49833 (30*2π)/193765 weeks
31.11234 -.67951 (31*2π)/193762 weeks
32-.16618 -.70271 (32*2π)/193761 weeks
33-.15108 -.46759 (33*2π)/193759 weeks
34-.04446 -.49988 (34*2π)/193757 weeks
35-.01391 -.46689 (35*2π)/193755 weeks
36-.10121 -.45426 (36*2π)/193754 weeks
37-.00585 -.26862 (37*2π)/193752 weeks
38.09975 -.5026 (38*2π)/193751 weeks
39.0525 -.45331 (39*2π)/193750 weeks
40.01243 -.55272 (40*2π)/193748 weeks
41-.23444 -.38894 (41*2π)/193747 weeks
42-.01476 -.26733 (42*2π)/193746 weeks
43.1082 -.33627 (43*2π)/193745 weeks
44.0494 -.44564 (44*2π)/193744 weeks
45-.02399 -.43434 (45*2π)/193743 weeks
46-.0261 -.38584 (46*2π)/193742 weeks
47.00381 -.29916 (47*2π)/193741 weeks
48.0367 -.46214 (48*2π)/193740 weeks
49-.07524 -.35591 (49*2π)/193740 weeks
50-.04726 -.32989 (50*2π)/193739 weeks
51-.00838 -.20855 (51*2π)/193738 weeks
52.07463 -.39679 (52*2π)/193737 weeks
53-.03009 -.39 (53*2π)/193737 weeks
54-.06157 -.27199 (54*2π)/193736 weeks
55.01114 -.27284 (55*2π)/193735 weeks
56-.05089 -.26914 (56*2π)/193735 weeks
57.09443 -.23257 (57*2π)/193734 weeks
58.03243 -.30966 (58*2π)/193733 weeks
59.0683 -.26528 (59*2π)/193733 weeks
60.06752 -.34643 (60*2π)/193732 weeks
61.04073 -.39514 (61*2π)/193732 weeks
62-.08507 -.36878 (62*2π)/193731 weeks
63-.05707 -.27328 (63*2π)/193731 weeks
64-.00616 -.21463 (64*2π)/193730 weeks
65.07172 -.29303 (65*2π)/193730 weeks
66-.04145 -.35701 (66*2π)/193729 weeks
67-.02782 -.261 (67*2π)/193729 weeks
68.03613 -.28075 (68*2π)/193728 weeks
69-.01815 -.30479 (69*2π)/193728 weeks
70-.06548 -.28813 (70*2π)/193728 weeks
71-.03007 -.28119 (71*2π)/193727 weeks
72-.06864 -.2983 (72*2π)/193727 weeks
73-.02623 -.24372 (73*2π)/193727 weeks
74-.06435 -.28421 (74*2π)/193726 weeks
75-.09511 -.18202 (75*2π)/193726 weeks
76.00665 -.25251 (76*2π)/193725 weeks
77-.07635 -.25369 (77*2π)/193725 weeks
78-.06255 -.20754 (78*2π)/193725 weeks
79-.08687 -.16992 (79*2π)/193725 weeks
80-.01873 -.13479 (80*2π)/193724 weeks
81.00572 -.19291 (81*2π)/193724 weeks
82-.01245 -.16462 (82*2π)/193724 weeks
83.04917 -.15359 (83*2π)/193723 weeks
84.02698 -.22983 (84*2π)/193723 weeks
85-.02239 -.21453 (85*2π)/193723 weeks
86.00972 -.21621 (86*2π)/193723 weeks
87.01158 -.18562 (87*2π)/193722 weeks
88.03853 -.2355 (88*2π)/193722 weeks
89-.04593 -.20944 (89*2π)/193722 weeks
90.00473 -.16432 (90*2π)/193722 weeks
91.0382 -.21622 (91*2π)/193721 weeks
92.07416 -.25667 (92*2π)/193721 weeks
93-.01238 -.32367 (93*2π)/193721 weeks
94-.0957 -.24899 (94*2π)/193721 weeks
95-.06466 -.19766 (95*2π)/193720 weeks
96-.01822 -.17243 (96*2π)/193720 weeks
97-.00618 -.22748 (97*2π)/193720 weeks
98-.06873 -.23652 (98*2π)/193720 weeks
99-.05296 -.15688 (99*2π)/193720 weeks
100.01093 -.24237 (100*2π)/193719 weeks
101-.09885 -.23611 (101*2π)/193719 weeks
102-.06603 -.20574 (102*2π)/193719 weeks
103-.11004 -.17861 (103*2π)/193719 weeks
104-.07377 -.14947 (104*2π)/193719 weeks
105-.06349 -.14256 (105*2π)/193718 weeks
106-.02996 -.19097 (106*2π)/193718 weeks
107-.12397 -.15847 (107*2π)/193718 weeks
108-.07901 -.11255 (108*2π)/193718 weeks
109-.05576 -.09154 (109*2π)/193718 weeks
110.01745 -.13636 (110*2π)/193718 weeks
111-.06078 -.15583 (111*2π)/193717 weeks
112-.06856 -.08451 (112*2π)/193717 weeks
113.0044 -.08877 (113*2π)/193717 weeks
114.03399 -.13512 (114*2π)/193717 weeks
115-.00341 -.18304 (115*2π)/193717 weeks
116-.07539 -.14936 (116*2π)/193717 weeks
117-.03711 -.06967 (117*2π)/193717 weeks
118.05172 -.0962 (118*2π)/193716 weeks
119.05577 -.18345 (119*2π)/193716 weeks
120-.00981 -.20971 (120*2π)/193716 weeks
121-.07807 -.16155 (121*2π)/193716 weeks
122-.03487 -.09267 (122*2π)/193716 weeks
123.01995 -.13828 (123*2π)/193716 weeks
124-.00053 -.16983 (124*2π)/193716 weeks
125-.04895 -.16827 (125*2π)/193715 weeks
126-.03443 -.12666 (126*2π)/193715 weeks
127.01262 -.14018 (127*2π)/193715 weeks
128-.04584 -.18572 (128*2π)/193715 weeks
129-.05529 -.13528 (129*2π)/193715 weeks
130-.03344 -.14115 (130*2π)/193715 weeks
131-.04043 -.11147 (131*2π)/193715 weeks
132-.03144 -.13054 (132*2π)/193715 weeks
133-.05185 -.10148 (133*2π)/193715 weeks
134.00103 -.12888 (134*2π)/193714 weeks
135-.03896 -.12891 (135*2π)/193714 weeks
136.00053 -.11607 (136*2π)/193714 weeks
137-.04253 -.1542 (137*2π)/193714 weeks
138-.03576 -.11339 (138*2π)/193714 weeks
139-.00884 -.11854 (139*2π)/193714 weeks
140-.01137 -.13091 (140*2π)/193714 weeks
141-.01735 -.14542 (141*2π)/193714 weeks
142-.07998 -.15926 (142*2π)/193714 weeks
143-.07468 -.0777 (143*2π)/193714 weeks
144-.02144 -.09589 (144*2π)/193713 weeks
145-.01581 -.07268 (145*2π)/193713 weeks
146.02795 -.11473 (146*2π)/193713 weeks
147-.02641 -.1533 (147*2π)/193713 weeks
148-.03342 -.10469 (148*2π)/193713 weeks
149-.02508 -.12628 (149*2π)/193713 weeks
150-.03342 -.09882 (150*2π)/193713 weeks
151-.00846 -.10358 (151*2π)/193713 weeks
152-.00506 -.12153 (152*2π)/193713 weeks
153-.00904 -.12831 (153*2π)/193713 weeks
154-.01995 -.14524 (154*2π)/193713 weeks
155-.05205 -.13245 (155*2π)/193712 weeks
156-.0537 -.13689 (156*2π)/193712 weeks
157-.07279 -.07885 (157*2π)/193712 weeks
158.00197 -.09256 (158*2π)/193712 weeks
159-.05251 -.12598 (159*2π)/193712 weeks
160-.04969 -.0787 (160*2π)/193712 weeks
161-.02699 -.0636 (161*2π)/193712 weeks
162.00666 -.09704 (162*2π)/193712 weeks
163-.03433 -.11387 (163*2π)/193712 weeks
164-.02706 -.052 (164*2π)/193712 weeks
165.01085 -.08612 (165*2π)/193712 weeks
166.01789 -.09274 (166*2π)/193712 weeks
167.04034 -.14675 (167*2π)/193712 weeks
168-.02694 -.14981 (168*2π)/193712 weeks
169-.01958 -.12667 (169*2π)/193711 weeks
170-.03245 -.14621 (170*2π)/193711 weeks
171-.05555 -.12125 (171*2π)/193711 weeks
172-.05928 -.1272 (172*2π)/193711 weeks
173-.06093 -.08745 (173*2π)/193711 weeks
174-.02499 -.10084 (174*2π)/193711 weeks
175-.06421 -.10649 (175*2π)/193711 weeks
176-.04116 -.06592 (176*2π)/193711 weeks
177-.0284 -.09192 (177*2π)/193711 weeks
178-.01731 -.07493 (178*2π)/193711 weeks
179-.01808 -.11215 (179*2π)/193711 weeks
180-.05343 -.09863 (180*2π)/193711 weeks
181-.04478 -.06415 (181*2π)/193711 weeks
182-.01075 -.09379 (182*2π)/193711 weeks
183-.04879 -.08047 (183*2π)/193711 weeks
184-.01525 -.05267 (184*2π)/193711 weeks
185.00345 -.08448 (185*2π)/193710 weeks
186-.01286 -.09003 (186*2π)/193710 weeks
187-.01518 -.08985 (187*2π)/193710 weeks
188-.03168 -.09808 (188*2π)/193710 weeks
189-.001 -.08238 (189*2π)/193710 weeks
190-.02829 -.12139 (190*2π)/193710 weeks
191-.03192 -.06056 (191*2π)/193710 weeks
192-.0082 -.09409 (192*2π)/193710 weeks
193-.01404 -.08225 (193*2π)/193710 weeks
194-.0159 -.11157 (194*2π)/193710 weeks
195-.04313 -.07885 (195*2π)/193710 weeks
196-.01251 -.0685 (196*2π)/193710 weeks
197.0073 -.06443 (197*2π)/193710 weeks
198.01874 -.1181 (198*2π)/193710 weeks
199-.02139 -.12587 (199*2π)/193710 weeks
200-.03533 -.12434 (200*2π)/193710 weeks
201-.03176 -.08944 (201*2π)/193710 weeks
202-.02306 -.0901 (202*2π)/193710 weeks
203-.03344 -.11356 (203*2π)/193710 weeks
204-.05131 -.09328 (204*2π)/19379 weeks
205-.03144 -.08121 (205*2π)/19379 weeks
206-.03202 -.08466 (206*2π)/19379 weeks
207-.02193 -.08884 (207*2π)/19379 weeks
208-.02483 -.07989 (208*2π)/19379 weeks
209-.03649 -.08967 (209*2π)/19379 weeks
210-.01979 -.06377 (210*2π)/19379 weeks
211.00884 -.09825 (211*2π)/19379 weeks
212-.0335 -.10963 (212*2π)/19379 weeks
213-.0361 -.09759 (213*2π)/19379 weeks
214-.04909 -.07458 (214*2π)/19379 weeks
215-.01781 -.06861 (215*2π)/19379 weeks
216-.02624 -.0917 (216*2π)/19379 weeks
217-.01868 -.0838 (217*2π)/19379 weeks
218-.02567 -.11073 (218*2π)/19379 weeks
219-.04881 -.1007 (219*2π)/19379 weeks
220-.05074 -.07826 (220*2π)/19379 weeks
221-.04401 -.06673 (221*2π)/19379 weeks
222-.03752 -.06866 (222*2π)/19379 weeks
223-.01691 -.06036 (223*2π)/19379 weeks
224-.02209 -.08508 (224*2π)/19379 weeks
225-.01705 -.05338 (225*2π)/19379 weeks
226.00375 -.09941 (226*2π)/19379 weeks
227-.03694 -.09079 (227*2π)/19379 weeks
228-.01899 -.10292 (228*2π)/19378 weeks
229-.0453 -.08507 (229*2π)/19378 weeks
230-.02016 -.08973 (230*2π)/19378 weeks
231-.04121 -.10081 (231*2π)/19378 weeks
232-.05786 -.10093 (232*2π)/19378 weeks
233-.06473 -.06834 (233*2π)/19378 weeks
234-.04947 -.06358 (234*2π)/19378 weeks
235-.05194 -.05478 (235*2π)/19378 weeks
236-.0325 -.0423 (236*2π)/19378 weeks
237-.01247 -.05179 (237*2π)/19378 weeks
238-.01018 -.07306 (238*2π)/19378 weeks
239-.02348 -.08254 (239*2π)/19378 weeks
240-.02365 -.08846 (240*2π)/19378 weeks
241-.04782 -.07864 (241*2π)/19378 weeks
242-.04659 -.06322 (242*2π)/19378 weeks
243-.04125 -.04963 (243*2π)/19378 weeks
244-.01422 -.06022 (244*2π)/19378 weeks
245-.02262 -.06876 (245*2π)/19378 weeks
246-.01253 -.08065 (246*2π)/19378 weeks
247-.02979 -.09135 (247*2π)/19378 weeks
248-.04133 -.08652 (248*2π)/19378 weeks
249-.05942 -.06069 (249*2π)/19378 weeks
250-.02139 -.03903 (250*2π)/19378 weeks
251-.00208 -.07879 (251*2π)/19378 weeks
252-.0639 -.09515 (252*2π)/19378 weeks
253-.06282 -.04546 (253*2π)/19378 weeks
254-.02536 -.03574 (254*2π)/19378 weeks
255-.01523 -.05824 (255*2π)/19378 weeks
256-.02888 -.0651 (256*2π)/19378 weeks
257-.03548 -.05774 (257*2π)/19378 weeks
258-.02131 -.03078 (258*2π)/19378 weeks
259.00732 -.05687 (259*2π)/19377 weeks
260-.00442 -.08944 (260*2π)/19377 weeks
261-.03472 -.09376 (261*2π)/19377 weeks
262-.05756 -.06332 (262*2π)/19377 weeks
263-.0195 -.05075 (263*2π)/19377 weeks
264-.01677 -.07026 (264*2π)/19377 weeks
265-.02962 -.06816 (265*2π)/19377 weeks
266-.02555 -.08798 (266*2π)/19377 weeks
267-.0646 -.08054 (267*2π)/19377 weeks
268-.04548 -.04613 (268*2π)/19377 weeks
269-.04649 -.04281 (269*2π)/19377 weeks
270-.02957 -.02714 (270*2π)/19377 weeks
271-.01258 -.04256 (271*2π)/19377 weeks
272-.00538 -.0698 (272*2π)/19377 weeks
273-.02154 -.08129 (273*2π)/19377 weeks
274-.0431 -.07997 (274*2π)/19377 weeks
275-.05322 -.04861 (275*2π)/19377 weeks
276-.03234 -.03164 (276*2π)/19377 weeks
277-.00508 -.05078 (277*2π)/19377 weeks
278-.00518 -.07271 (278*2π)/19377 weeks
279-.02882 -.08528 (279*2π)/19377 weeks
280-.05917 -.0623 (280*2π)/19377 weeks
281-.03489 -.044 (281*2π)/19377 weeks
282-.0251 -.05542 (282*2π)/19377 weeks
283-.02698 -.06075 (283*2π)/19377 weeks
284-.03834 -.05052 (284*2π)/19377 weeks
285-.02489 -.04865 (285*2π)/19377 weeks
286-.01843 -.05647 (286*2π)/19377 weeks
287-.02819 -.07423 (287*2π)/19377 weeks
288-.04859 -.06516 (288*2π)/19377 weeks
289-.0427 -.04125 (289*2π)/19377 weeks
290-.03315 -.04436 (290*2π)/19377 weeks
291-.02228 -.03744 (291*2π)/19377 weeks
292-.01208 -.05525 (292*2π)/19377 weeks
293-.02086 -.05977 (293*2π)/19377 weeks
294-.02731 -.05356 (294*2π)/19377 weeks
295-.02858 -.06549 (295*2π)/19377 weeks
296-.04179 -.05069 (296*2π)/19377 weeks
297-.03323 -.04966 (297*2π)/19377 weeks
298-.03456 -.0396 (298*2π)/19377 weeks
299-.01135 -.03418 (299*2π)/19376 weeks
300-.00487 -.05885 (300*2π)/19376 weeks
301-.03439 -.07727 (301*2π)/19376 weeks
302-.0406 -.04829 (302*2π)/19376 weeks
303-.03348 -.04132 (303*2π)/19376 weeks
304-.01595 -.0314 (304*2π)/19376 weeks
305-.01284 -.05772 (305*2π)/19376 weeks
306-.03357 -.05951 (306*2π)/19376 weeks
307-.02293 -.0338 (307*2π)/19376 weeks
308-.00611 -.0376 (308*2π)/19376 weeks
309.00763 -.05642 (309*2π)/19376 weeks
310-.02288 -.08465 (310*2π)/19376 weeks
311-.03251 -.05331 (311*2π)/19376 weeks
312-.00683 -.05995 (312*2π)/19376 weeks
313-.02446 -.06492 (313*2π)/19376 weeks
314-.01798 -.06599 (314*2π)/19376 weeks
315-.03499 -.08617 (315*2π)/19376 weeks
316-.04399 -.04819 (316*2π)/19376 weeks
317-.01851 -.05408 (317*2π)/19376 weeks
318-.02962 -.06202 (318*2π)/19376 weeks
319-.02975 -.07546 (319*2π)/19376 weeks
320-.0518 -.05926 (320*2π)/19376 weeks
321-.03323 -.05369 (321*2π)/19376 weeks
322-.03712 -.0506 (322*2π)/19376 weeks
323-.02888 -.05255 (323*2π)/19376 weeks
324-.03312 -.06069 (324*2π)/19376 weeks
325-.04383 -.05078 (325*2π)/19376 weeks
326-.03149 -.04157 (326*2π)/19376 weeks
327-.0263 -.05304 (327*2π)/19376 weeks
328-.03057 -.05558 (328*2π)/19376 weeks
329-.0376 -.07107 (329*2π)/19376 weeks
330-.05322 -.04846 (330*2π)/19376 weeks
331-.03661 -.03955 (331*2π)/19376 weeks
332-.03093 -.0401 (332*2π)/19376 weeks
333-.02706 -.04318 (333*2π)/19376 weeks
334-.03077 -.06165 (334*2π)/19376 weeks
335-.03242 -.05128 (335*2π)/19376 weeks
336-.03535 -.05901 (336*2π)/19376 weeks
337-.05412 -.03873 (337*2π)/19376 weeks
338-.03658 -.03535 (338*2π)/19376 weeks
339-.03254 -.03415 (339*2π)/19376 weeks
340-.02562 -.04967 (340*2π)/19376 weeks
341-.04393 -.04253 (341*2π)/19376 weeks
342-.03243 -.02921 (342*2π)/19376 weeks
343-.02834 -.03721 (343*2π)/19376 weeks
344-.02353 -.0402 (344*2π)/19376 weeks
345-.02852 -.05586 (345*2π)/19376 weeks
346-.05228 -.0305 (346*2π)/19376 weeks
347-.01636 -.02011 (347*2π)/19376 weeks
348-.02198 -.04606 (348*2π)/19376 weeks
349-.02462 -.03871 (349*2π)/19376 weeks
350-.03801 -.03873 (350*2π)/19376 weeks
351-.0286 -.01776 (351*2π)/19376 weeks
352-.00676 -.02929 (352*2π)/19376 weeks
353-.01037 -.0476 (353*2π)/19375 weeks
354-.02004 -.03852 (354*2π)/19375 weeks
355-.00657 -.04068 (355*2π)/19375 weeks
356-.02045 -.045 (356*2π)/19375 weeks
357-.00856 -.04812 (357*2π)/19375 weeks
358-.01451 -.07102 (358*2π)/19375 weeks
359-.03619 -.05187 (359*2π)/19375 weeks
360-.01593 -.04611 (360*2π)/19375 weeks
361-.03616 -.0597 (361*2π)/19375 weeks
362-.02794 -.04098 (362*2π)/19375 weeks
363-.02337 -.07166 (363*2π)/19375 weeks
364-.0544 -.04116 (364*2π)/19375 weeks
365-.01814 -.0298 (365*2π)/19375 weeks
366-.02917 -.04071 (366*2π)/19375 weeks
367-.01609 -.0502 (367*2π)/19375 weeks
368-.04102 -.05611 (368*2π)/19375 weeks
369-.02554 -.032 (369*2π)/19375 weeks
370-.01843 -.04509 (370*2π)/19375 weeks
371-.02184 -.06619 (371*2π)/19375 weeks
372-.05297 -.06352