Back to list of Stocks    See Also: Seasonal Analysis of AMRSGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AMRS (Amyris Inc)


AMRS (Amyris Inc) appears to have interesting cyclic behaviour every 33 weeks (8.1805*sine), 16 weeks (8.1364*sine), and 28 weeks (7.3273*cosine).

AMRS (Amyris Inc) has an average price of 93.03 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 9/28/2010 to 7/31/2017 for AMRS (Amyris Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
093.03098   0 
180.6045 70.34296 (1*2π)/358358 weeks
246.42686 92.07776 (2*2π)/358179 weeks
3-3.01944 73.09946 (3*2π)/358119 weeks
4-18.43937 48.00048 (4*2π)/35890 weeks
5-20.67938 20.77413 (5*2π)/35872 weeks
6-11.09179 14.9453 (6*2π)/35860 weeks
7-7.71608 13.34199 (7*2π)/35851 weeks
8-6.46232 11.3583 (8*2π)/35845 weeks
9-6.05051 9.46946 (9*2π)/35840 weeks
10-3.1152 3.46715 (10*2π)/35836 weeks
11-2.87659 8.1805 (11*2π)/35833 weeks
12-2.85642 5.13532 (12*2π)/35830 weeks
13-7.32732 4.47996 (13*2π)/35828 weeks
14-2.51328 -.13986 (14*2π)/35826 weeks
15.17186 .88685 (15*2π)/35824 weeks
16-.20513 .39985 (16*2π)/35822 weeks
171.62985 .39648 (17*2π)/35821 weeks
183.80657 -.13009 (18*2π)/35820 weeks
195.62737 1.85945 (19*2π)/35819 weeks
205.73969 4.02089 (20*2π)/35818 weeks
214.87711 6.9611 (21*2π)/35817 weeks
22.81747 8.13642 (22*2π)/35816 weeks
23-1.06468 5.99465 (23*2π)/35816 weeks
24-2.70627 3.50202 (24*2π)/35815 weeks
25-1.03442 1.02001 (25*2π)/35814 weeks
262.24951 .23055 (26*2π)/35814 weeks
273.63278 1.88693 (27*2π)/35813 weeks
282.16145 5.80841 (28*2π)/35813 weeks
29-.5471 3.87561 (29*2π)/35812 weeks
30-1.06988 3.12809 (30*2π)/35812 weeks
31.44404 .82437 (31*2π)/35812 weeks
321.15772 3.26668 (32*2π)/35811 weeks
33.89401 2.89133 (33*2π)/35811 weeks
34-.45105 3.16457 (34*2π)/35811 weeks
35-.68051 1.36455 (35*2π)/35810 weeks
36.43665 1.65085 (36*2π)/35810 weeks
37.57586 1.09936 (37*2π)/35810 weeks
38.89174 1.68606 (38*2π)/3589 weeks
39-.15407 1.36489 (39*2π)/3589 weeks
40.71619 1.25434 (40*2π)/3589 weeks
41.40537 .88656 (41*2π)/3589 weeks
422.18432 .75317 (42*2π)/3589 weeks
431.17601 .8465 (43*2π)/3588 weeks
442.6449 1.31127 (44*2π)/3588 weeks
451.95909 2.22188 (45*2π)/3588 weeks
461.7112 2.30585 (46*2π)/3588 weeks
47.82878 2.78626 (47*2π)/3588 weeks
48.92584 1.93911 (48*2π)/3587 weeks
49.20067 1.65632 (49*2π)/3587 weeks
501.2065 1.31993 (50*2π)/3587 weeks
511.94828 1.53056 (51*2π)/3587 weeks
521.50176 2.93402 (52*2π)/3587 weeks
53.1423 2.95406 (53*2π)/3587 weeks
54-.6332 1.53657 (54*2π)/3587 weeks
55-.02013 1.44658 (55*2π)/3587 weeks
56.62641 1.0192 (56*2π)/3586 weeks
57.5864 1.42934 (57*2π)/3586 weeks
58.4797 1.80599 (58*2π)/3586 weeks
59.17581 1.79089 (59*2π)/3586 weeks
60.016 .88068 (60*2π)/3586 weeks
61-.38067 .23942 (61*2π)/3586 weeks
62.93892 -.15123 (62*2π)/3586 weeks
631.79676 .3589 (63*2π)/3586 weeks
641.62467 1.51131 (64*2π)/3586 weeks
65.96712 1.55172 (65*2π)/3586 weeks
66.97149 2.02614 (66*2π)/3585 weeks
67-.37405 1.78394 (67*2π)/3585 weeks
68-.27551 .55791 (68*2π)/3585 weeks
69.89427 -.3699 (69*2π)/3585 weeks
702.18285 .59128 (70*2π)/3585 weeks
711.32724 1.49427 (71*2π)/3585 weeks
721.02567 1.39735 (72*2π)/3585 weeks
73-.04965 1.66559 (73*2π)/3585 weeks
74.69173 .38706 (74*2π)/3585 weeks
75.73046 .6654 (75*2π)/3585 weeks
761.84818 .61814 (76*2π)/3585 weeks
771.43896 1.57077 (77*2π)/3585 weeks
781.46558 2.09995 (78*2π)/3585 weeks
79.0212 2.58375 (79*2π)/3585 weeks
80-.82105 .9736 (80*2π)/3584 weeks
81-.0253 .41191 (81*2π)/3584 weeks
82.80689 -.15206 (82*2π)/3584 weeks
831.14248 1.12462 (83*2π)/3584 weeks
841.08442 1.4156 (84*2π)/3584 weeks
85.15504 1.97111 (85*2π)/3584 weeks
86.06405 .3807 (86*2π)/3584 weeks
87.26102 .826 (87*2π)/3584 weeks
88.21933 .94844 (88*2π)/3584 weeks
89.21544 .52696 (89*2π)/3584 weeks
90.8059 .28628 (90*2π)/3584 weeks
91.36287 1.06699 (91*2π)/3584 weeks
92-.01283 1.12375 (92*2π)/3584 weeks
93-.07134 .43132 (93*2π)/3584 weeks
94-.07756 -.00625 (94*2π)/3584 weeks
95.46966 -.3465 (95*2π)/3584 weeks
961.02752 -.09551 (96*2π)/3584 weeks
971.27591 .17582 (97*2π)/3584 weeks
981.10989 1.26429 (98*2π)/3584 weeks
99.35775 .78 (99*2π)/3584 weeks
100-.03925 .77073 (100*2π)/3584 weeks
101.12331 -.54286 (101*2π)/3584 weeks
1021.38046 -.16238 (102*2π)/3584 weeks
1031.52618 .2861 (103*2π)/3583 weeks
1041.26091 1.24287 (104*2π)/3583 weeks
105.15356 .82187 (105*2π)/3583 weeks
106-.0217 .50359 (106*2π)/3583 weeks
107.07988 -.30888 (107*2π)/3583 weeks
1081.07826 -.25841 (108*2π)/3583 weeks
109.92294 .06169 (109*2π)/3583 weeks
1101.02428 .26647 (110*2π)/3583 weeks
111.81127 .42176 (111*2π)/3583 weeks
112.75201 .22636 (112*2π)/3583 weeks
113.60918 -.26328 (113*2π)/3583 weeks
1141.20949 -.62287 (114*2π)/3583 weeks
1151.8278 .10169 (115*2π)/3583 weeks
1161.66538 .15279 (116*2π)/3583 weeks
1171.92038 .9921 (117*2π)/3583 weeks
1181.54004 1.31552 (118*2π)/3583 weeks
119.55217 1.58765 (119*2π)/3583 weeks
120.45264 .22655 (120*2π)/3583 weeks
1211.38953 .57751 (121*2π)/3583 weeks
1221.30829 1.06089 (122*2π)/3583 weeks
1231.15171 1.47856 (123*2π)/3583 weeks
124.25248 1.9346 (124*2π)/3583 weeks
125-.53058 1.2948 (125*2π)/3583 weeks
126-.63887 .32607 (126*2π)/3583 weeks
127.18888 -.15995 (127*2π)/3583 weeks
128.19728 -.00501 (128*2π)/3583 weeks
129.75335 .08509 (129*2π)/3583 weeks
130.21319 .25801 (130*2π)/3583 weeks
131.01231 -.1249 (131*2π)/3583 weeks
132.40758 -1.03963 (132*2π)/3583 weeks
1331.31536 -.58942 (133*2π)/3583 weeks
1341.5424 .18636 (134*2π)/3583 weeks
1351.15959 .43831 (135*2π)/3583 weeks
136.77872 .5281 (136*2π)/3583 weeks
137.78238 .28148 (137*2π)/3583 weeks
138.76718 .2126 (138*2π)/3583 weeks
139.84626 .21958 (139*2π)/3583 weeks
140.80895 .22689 (140*2π)/3583 weeks
141.94963 .06125 (141*2π)/3583 weeks
1421.3842 .35411 (142*2π)/3583 weeks
1431.13123 .90375 (143*2π)/3583 weeks
144.56137 .81615 (144*2π)/3582 weeks
145.35051 .61497 (145*2π)/3582 weeks
146.61628 .27763 (146*2π)/3582 weeks
147.26605 .33703 (147*2π)/3582 weeks
148.76284 .2365 (148*2π)/3582 weeks
149.72215 .21239 (149*2π)/3582 weeks
150.35578 .29431 (150*2π)/3582 weeks
151.59789 .14618 (151*2π)/3582 weeks
152.7316 -.31455 (152*2π)/3582 weeks
1531.01103 .62548 (153*2π)/3582 weeks
154.67307 .29178 (154*2π)/3582 weeks
155.13389 .67869 (155*2π)/3582 weeks
156.10873 -.37538 (156*2π)/3582 weeks
157.59056 -.1228 (157*2π)/3582 weeks
158.50312 -.33432 (158*2π)/3582 weeks
1591.07662 .21915 (159*2π)/3582 weeks
160.62697 .11972 (160*2π)/3582 weeks
161.509 .34454 (161*2π)/3582 weeks
162.29825 -.03263 (162*2π)/3582 weeks
163.49868 .04618 (163*2π)/3582 weeks
164.27639 -.33395 (164*2π)/3582 weeks
165.76413 -.38737 (165*2π)/3582 weeks
166.78261 -.28385 (166*2π)/3582 weeks
167.6611 -.01654 (167*2π)/3582 weeks
168.70209 -.31749 (168*2π)/3582 weeks
169.71578 -.49617 (169*2π)/3582 weeks
1701.00844 -.40598 (170*2π)/3582 weeks
1711.11772 -.12712 (171*2π)/3582 weeks
1721.04017 -.17386 (172*2π)/3582 weeks
1731.21523 .0246 (173*2π)/3582 weeks
174.87841 .27682 (174*2π)/3582 weeks
175.58473 .12742 (175*2π)/3582 weeks
176.52141 -.29909 (176*2π)/3582 weeks
177.67658 -.75569 (177*2π)/3582 weeks
1781.48586 -.65811 (178*2π)/3582 weeks
1791.86402   (179*2π)/3582 weeks
1801.48586 .65811 (180*2π)/3582 weeks
181.67658 .75569 (181*2π)/3582 weeks
182.52141 .29909 (182*2π)/3582 weeks
183.58473 -.12742 (183*2π)/3582 weeks
184.87841 -.27682 (184*2π)/3582 weeks
1851.21523 -.0246 (185*2π)/3582 weeks
1861.04017 .17386 (186*2π)/3582 weeks
1871.11772 .12712 (187*2π)/3582 weeks
1881.00844 .40598 (188*2π)/3582 weeks
189.71578 .49617 (189*2π)/3582 weeks
190.70209 .31749 (190*2π)/3582 weeks
191.6611 .01654 (191*2π)/3582 weeks
192.78261 .28385 (192*2π)/3582 weeks
193.76413 .38737 (193*2π)/3582 weeks
194.27639 .33395 (194*2π)/3582 weeks
195.49868 -.04618 (195*2π)/3582 weeks
196.29825 .03263 (196*2π)/3582 weeks
197.509 -.34454 (197*2π)/3582 weeks
198.62697 -.11972 (198*2π)/3582 weeks
1991.07662 -.21915 (199*2π)/3582 weeks
200.50312 .33432 (200*2π)/3582 weeks
201.59056 .1228 (201*2π)/3582 weeks
202.10873 .37538 (202*2π)/3582 weeks
203.13389 -.67869 (203*2π)/3582 weeks
204.67307 -.29178 (204*2π)/3582 weeks
2051.01103 -.62548 (205*2π)/3582 weeks
206.7316 .31455 (206*2π)/3582 weeks
207.59789 -.14618 (207*2π)/3582 weeks
208.35578 -.29431 (208*2π)/3582 weeks
209.72215 -.21239 (209*2π)/3582 weeks
210.76284 -.2365 (210*2π)/3582 weeks
211.26605 -.33703 (211*2π)/3582 weeks
212.61628 -.27763 (212*2π)/3582 weeks
213.35051 -.61497 (213*2π)/3582 weeks
214.56137 -.81615 (214*2π)/3582 weeks
2151.13123 -.90375 (215*2π)/3582 weeks
2161.3842 -.35411 (216*2π)/3582 weeks
217.94963 -.06125 (217*2π)/3582 weeks
218.80895 -.22689 (218*2π)/3582 weeks
219.84626 -.21958 (219*2π)/3582 weeks
220.76718 -.2126 (220*2π)/3582 weeks
221.78238 -.28148 (221*2π)/3582 weeks
222.77872 -.5281 (222*2π)/3582 weeks
2231.15959 -.43831 (223*2π)/3582 weeks
2241.5424 -.18636 (224*2π)/3582 weeks
2251.31536 .58942 (225*2π)/3582 weeks
226.40758 1.03963 (226*2π)/3582 weeks
227.01231 .1249 (227*2π)/3582 weeks
228.21319 -.25801 (228*2π)/3582 weeks
229.75335 -.08509 (229*2π)/3582 weeks
230.19728 .00501 (230*2π)/3582 weeks
231.18888 .15995 (231*2π)/3582 weeks
232-.63887 -.32607 (232*2π)/3582 weeks
233-.53058 -1.2948 (233*2π)/3582 weeks
234.25248 -1.9346 (234*2π)/3582 weeks
2351.15171 -1.47856 (235*2π)/3582 weeks
2361.30829 -1.06089 (236*2π)/3582 weeks
2371.38953 -.57751 (237*2π)/3582 weeks
238.45264 -.22655 (238*2π)/3582 weeks
239.55217 -1.58765 (239*2π)/3581 weeks
2401.54004 -1.31552 (240*2π)/3581 weeks
2411.92038 -.9921 (241*2π)/3581 weeks
2421.66538 -.15279 (242*2π)/3581 weeks
2431.8278 -.10169 (243*2π)/3581 weeks
2441.20949 .62287 (244*2π)/3581 weeks
245.60918 .26328 (245*2π)/3581 weeks
246.75201 -.22636 (246*2π)/3581 weeks
247.81127 -.42176 (247*2π)/3581 weeks
2481.02428 -.26647 (248*2π)/3581 weeks
249.92294 -.06169 (249*2π)/3581 weeks
2501.07826 .25841 (250*2π)/3581 weeks
251.07988 .30888 (251*2π)/3581 weeks
252-.0217 -.50359 (252*2π)/3581 weeks
253.15356 -.82187 (253*2π)/3581 weeks
2541.26091 -1.24287 (254*2π)/3581 weeks
2551.52618 -.2861 (255*2π)/3581 weeks
2561.38046 .16238 (256*2π)/3581 weeks
257.12331 .54286 (257*2π)/3581 weeks
258-.03925 -.77073 (258*2π)/3581 weeks
259.35775 -.78 (259*2π)/3581 weeks
2601.10989 -1.26429 (260*2π)/3581 weeks
2611.27591 -.17582 (261*2π)/3581 weeks
2621.02752 .09551 (262*2π)/3581 weeks
263.46966 .3465 (263*2π)/3581 weeks
264-.07756 .00625 (264*2π)/3581 weeks
265-.07134 -.43132 (265*2π)/3581 weeks
266-.01283 -1.12375 (266*2π)/3581 weeks
267.36287 -1.06699 (267*2π)/3581 weeks
268.8059 -.28628 (268*2π)/3581 weeks
269.21544 -.52696 (269*2π)/3581 weeks
270.21933 -.94844 (270*2π)/3581 weeks
271.26102 -.826 (271*2π)/3581 weeks
272.06405 -.3807 (272*2π)/3581 weeks
273.15504 -1.97111 (273*2π)/3581 weeks
2741.08442 -1.4156 (274*2π)/3581 weeks
2751.14248 -1.12462 (275*2π)/3581 weeks
276.80689 .15206 (276*2π)/3581 weeks
277-.0253 -.41191 (277*2π)/3581 weeks
278-.82105 -.9736 (278*2π)/3581 weeks
279.0212 -2.58375 (279*2π)/3581 weeks
2801.46558 -2.09995 (280*2π)/3581 weeks
2811.43896 -1.57077 (281*2π)/3581 weeks
2821.84818 -.61814 (282*2π)/3581 weeks
283.73046 -.6654 (283*2π)/3581 weeks
284.69173 -.38706 (284*2π)/3581 weeks
285-.04965 -1.66559 (285*2π)/3581 weeks
2861.02567 -1.39735 (286*2π)/3581 weeks
2871.32724 -1.49427 (287*2π)/3581 weeks
2882.18285 -.59128 (288*2π)/3581 weeks
289.89427 .3699 (289*2π)/3581 weeks
290-.27551 -.55791 (290*2π)/3581 weeks
291-.37405 -1.78394 (291*2π)/3581 weeks
292.97149 -2.02614 (292*2π)/3581 weeks
293.96712 -1.55172 (293*2π)/3581 weeks
2941.62467 -1.51131 (294*2π)/3581 weeks
2951.79676 -.3589 (295*2π)/3581 weeks
296.93892 .15123 (296*2π)/3581 weeks
297-.38067 -.23942 (297*2π)/3581 weeks
298.016 -.88068 (298*2π)/3581 weeks
299.17581 -1.79089 (299*2π)/3581 weeks
300.4797 -1.80599 (300*2π)/3581 weeks
301.5864 -1.42934 (301*2π)/3581 weeks
302.62641 -1.0192 (302*2π)/3581 weeks
303-.02013 -1.44658 (303*2π)/3581 weeks
304-.6332 -1.53657 (304*2π)/3581 weeks
305.1423 -2.95406 (305*2π)/3581 weeks
3061.50176 -2.93402 (306*2π)/3581 weeks
3071.94828 -1.53056 (307*2π)/3581 weeks
3081.2065 -1.31993 (308*2π)/3581 weeks
309.20067 -1.65632 (309*2π)/3581 weeks
310.92584 -1.93911 (310*2π)/3581 weeks
311.82878 -2.78626 (311*2π)/3581 weeks
3121.7112 -2.30585 (312*2π)/3581 weeks
3131.95909 -2.22188 (313*2π)/3581 weeks
3142.6449 -1.31127 (314*2π)/3581 weeks
3151.17601 -.8465 (315*2π)/3581 weeks
3162.18432 -.75317 (316*2π)/3581 weeks
317.40537 -.88656 (317*2π)/3581 weeks
318.71619 -1.25434 (318*2π)/3581 weeks
319-.15407 -1.36489 (319*2π)/3581 weeks
320.89174 -1.68606 (320*2π)/3581 weeks
321.57586 -1.09936 (321*2π)/3581 weeks
322.43665 -1.65085 (322*2π)/3581 weeks
323-.68051 -1.36455 (323*2π)/3581 weeks
324-.45105 -3.16457 (324*2π)/3581 weeks
325.89401 -2.89133 (325*2π)/3581 weeks
3261.15772 -3.26668 (326*2π)/3581 weeks
327.44404 -.82437 (327*2π)/3581 weeks
328-1.06988 -3.12809 (328*2π)/3581 weeks
329-.5471 -3.87561 (329*2π)/3581 weeks
3302.16145 -5.80841 (330*2π)/3581 weeks
3313.63278 -1.88693 (331*2π)/3581 weeks
3322.24951 -.23055 (332*2π)/3581 weeks
333-1.03442 -1.02001 (333*2π)/3581 weeks
334-2.70627 -3.50202 (334*2π)/3581 weeks
335-1.06468 -5.99465 (335*2π)/3581 weeks
336.81747 -8.13642 (336*2π)/3581 weeks
3374.87711 -6.9611 (337*2π)/3581 weeks
3385.73969 -4.02089 (338*2π)/3581 weeks
3395.62737 -1.85945 (339*2π)/3581 weeks
3403.80657 .13009 (340*2π)/3581 weeks
3411.62985 -.39648 (341*2π)/3581 weeks
342-.20513 -.39985 (342*2π)/3581 weeks
343.17186 -.88685 (343*2π)/3581 weeks
344-2.51328 .13986 (344*2π)/3581 weeks
345-7.32732 -4.47996 (345*2π)/3581 weeks
346-2.85642 -5.13532 (346*2π)/3581 weeks
347-2.87659 -8.1805 (347*2π)/3581 weeks
348-3.1152 -3.46715 (348*2π)/3581 weeks
349-6.05051 -9.46946 (349*2π)/3581 weeks
350-6.46232 -11.3583 (350*2π)/3581 weeks
351-7.71608 -13.34199 (351*2π)/3581 weeks
352-11.09179 -14.9453 (352*2π)/3581 weeks
353-20.67938 -20.77413 (353*2π)/3581 weeks
354-18.43937 -48.00048 (354*2π)/3581 weeks
355-3.01944 -73.09946 (355*2π)/3581 weeks
35646.42686 -92.07776 (356*2π)/3581 weeks



Back to list of Stocks