Back to list of Stocks    See Also: Seasonal Analysis of AMDGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AMD (Advanced Micro Devices, Inc.)


AMD (Advanced Micro Devices, Inc.) appears to have interesting cyclic behaviour every 147 weeks (1.6782*sine), 174 weeks (1.3014*sine), and 160 weeks (1.1704*sine).

AMD (Advanced Micro Devices, Inc.) has an average price of 10.26 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 11/21/2016 for AMD (Advanced Micro Devices, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
010.25542   0 
1-4.68358 -1.65515 (1*2π)/19141,914 weeks
2-.04956 3.8213 (2*2π)/1914957 weeks
3-.77797 2.19527 (3*2π)/1914638 weeks
4-1.29053 -1.09205 (4*2π)/1914479 weeks
5-1.45272 -2.20682 (5*2π)/1914383 weeks
6-.32343 2.30965 (6*2π)/1914319 weeks
73.07161 -1.77385 (7*2π)/1914273 weeks
8-1.25834 -1.43983 (8*2π)/1914239 weeks
9.6763 1.21135 (9*2π)/1914213 weeks
10-.01049 -.14433 (10*2π)/1914191 weeks
11.97744 1.30139 (11*2π)/1914174 weeks
12-.30169 -1.17042 (12*2π)/1914160 weeks
13.02403 1.67821 (13*2π)/1914147 weeks
14.36885 -.80885 (14*2π)/1914137 weeks
15-.14288 .34938 (15*2π)/1914128 weeks
16-.37129 -.10254 (16*2π)/1914120 weeks
17.58541 .23706 (17*2π)/1914113 weeks
18-.25285 -.91907 (18*2π)/1914106 weeks
19-.46525 -.25934 (19*2π)/1914101 weeks
20.65328 .97658 (20*2π)/191496 weeks
21-.27562 -1.02164 (21*2π)/191491 weeks
22.29559 .61524 (22*2π)/191487 weeks
23-.37911 -.44618 (23*2π)/191483 weeks
24.38829 .42416 (24*2π)/191480 weeks
25.02556 -.87972 (25*2π)/191477 weeks
26-.06355 .78519 (26*2π)/191474 weeks
27-.06405 -.31202 (27*2π)/191471 weeks
28-.16859 -.06392 (28*2π)/191468 weeks
29-.33559 -.55581 (29*2π)/191466 weeks
30-.27868 .16523 (30*2π)/191464 weeks
311.05734 -.02634 (31*2π)/191462 weeks
32-.43338 -.21768 (32*2π)/191460 weeks
33.19876 .31352 (33*2π)/191458 weeks
34.03115 -.56249 (34*2π)/191456 weeks
35-.2952 .06111 (35*2π)/191455 weeks
36.08246 -.5472 (36*2π)/191453 weeks
37-.05662 .88068 (37*2π)/191452 weeks
38.02911 -.65331 (38*2π)/191450 weeks
39-.49323 .23732 (39*2π)/191449 weeks
40.68031 -.07283 (40*2π)/191448 weeks
41-.31839 -.50013 (41*2π)/191447 weeks
42-.1289 .32918 (42*2π)/191446 weeks
43.19822 -.43359 (43*2π)/191445 weeks
44-.01168 .54136 (44*2π)/191444 weeks
45.18572 -.52756 (45*2π)/191443 weeks
46-.57645 .1187 (46*2π)/191442 weeks
47.38409 .12773 (47*2π)/191441 weeks
48-.2835 -.4219 (48*2π)/191440 weeks
49.34463 -.04092 (49*2π)/191439 weeks
50-.21432 -.20948 (50*2π)/191438 weeks
51-.01459 .38077 (51*2π)/191438 weeks
52.12013 -.47693 (52*2π)/191437 weeks
53-.20197 .12577 (53*2π)/191436 weeks
54.03251 -.03941 (54*2π)/191435 weeks
55.21327 .00313 (55*2π)/191435 weeks
56-.20839 -.18671 (56*2π)/191434 weeks
57.00167 .0064 (57*2π)/191434 weeks
58.06732 .04355 (58*2π)/191433 weeks
59.21933 -.12365 (59*2π)/191432 weeks
60-.37978 .0187 (60*2π)/191432 weeks
61.17722 .33357 (61*2π)/191431 weeks
62.06299 -.26437 (62*2π)/191431 weeks
63-.17529 -.02861 (63*2π)/191430 weeks
64.06764 .1305 (64*2π)/191430 weeks
65.12301 -.25632 (65*2π)/191429 weeks
66-.13458 -.02625 (66*2π)/191429 weeks
67.14407 .02718 (67*2π)/191429 weeks
68.06516 .02707 (68*2π)/191428 weeks
69.1514 .0655 (69*2π)/191428 weeks
70-.31126 .00823 (70*2π)/191427 weeks
71.13829 .08192 (71*2π)/191427 weeks
72-.25415 -.12354 (72*2π)/191427 weeks
73.2114 .03088 (73*2π)/191426 weeks
74.01132 -.11589 (74*2π)/191426 weeks
75-.17003 .12146 (75*2π)/191426 weeks
76.16337 .02982 (76*2π)/191425 weeks
77-.18888 -.01123 (77*2π)/191425 weeks
78.07314 -.0977 (78*2π)/191425 weeks
79.06811 -.02377 (79*2π)/191424 weeks
80-.07728 .01007 (80*2π)/191424 weeks
81.01071 -.06017 (81*2π)/191424 weeks
82.00852 .0137 (82*2π)/191423 weeks
83-.12167 -.03836 (83*2π)/191423 weeks
84.12842 .10808 (84*2π)/191423 weeks
85-.11898 .01173 (85*2π)/191423 weeks
86-.02068 -.16294 (86*2π)/191422 weeks
87-.11117 -.19225 (87*2π)/191422 weeks
88.10167 .00603 (88*2π)/191422 weeks
89.09377 -.15208 (89*2π)/191422 weeks
90.06616 .06854 (90*2π)/191421 weeks
91-.01933 .10618 (91*2π)/191421 weeks
92-.03099 .01065 (92*2π)/191421 weeks
93-.03817 .04156 (93*2π)/191421 weeks
94-.09236 -.0001 (94*2π)/191420 weeks
95.05017 -.07135 (95*2π)/191420 weeks
96-.08564 -.14771 (96*2π)/191420 weeks
97.08671 .10485 (97*2π)/191420 weeks
98.13378 -.15797 (98*2π)/191420 weeks
99-.14355 .02347 (99*2π)/191419 weeks
100.09371 .10821 (100*2π)/191419 weeks
101-.00074 -.08247 (101*2π)/191419 weeks
102.06233 .00242 (102*2π)/191419 weeks
103-.07593 -.03185 (103*2π)/191419 weeks
104.11434 .17851 (104*2π)/191418 weeks
105-.04732 -.17843 (105*2π)/191418 weeks
106-.01245 -.02234 (106*2π)/191418 weeks
107.06821 .01893 (107*2π)/191418 weeks
108.07622 .04639 (108*2π)/191418 weeks
109-.00605 -.05612 (109*2π)/191418 weeks
110-.15788 .16038 (110*2π)/191417 weeks
111.0181 -.12972 (111*2π)/191417 weeks
112.07062 .02917 (112*2π)/191417 weeks
113.03555 -.13661 (113*2π)/191417 weeks
114-.0695 .013 (114*2π)/191417 weeks
115.11711 .09431 (115*2π)/191417 weeks
116.10662 -.02724 (116*2π)/191417 weeks
117-.08939 -.04762 (117*2π)/191416 weeks
118.07807 .15373 (118*2π)/191416 weeks
119-.11411 -.1078 (119*2π)/191416 weeks
120-.10515 -.0023 (120*2π)/191416 weeks
121.01048 .03823 (121*2π)/191416 weeks
122.0868 -.09953 (122*2π)/191416 weeks
123.03205 -.11094 (123*2π)/191416 weeks
124-.1078 .07105 (124*2π)/191415 weeks
125.08824 .08173 (125*2π)/191415 weeks
126.14518 -.10848 (126*2π)/191415 weeks
127-.1595 -.05187 (127*2π)/191415 weeks
128.07745 .07431 (128*2π)/191415 weeks
129.01465 -.01282 (129*2π)/191415 weeks
130-.02477 -.05292 (130*2π)/191415 weeks
131-.10309 -.0462 (131*2π)/191415 weeks
132.07765 .12265 (132*2π)/191415 weeks
133.05734 -.15616 (133*2π)/191414 weeks
134-.06036 -.02081 (134*2π)/191414 weeks
135-.06729 -.04049 (135*2π)/191414 weeks
136.01276 -.04679 (136*2π)/191414 weeks
137.10498 .06974 (137*2π)/191414 weeks
138-.06331 -.0641 (138*2π)/191414 weeks
139.04604 .0444 (139*2π)/191414 weeks
140-.05614 -.0739 (140*2π)/191414 weeks
141-.04852 -.05545 (141*2π)/191414 weeks
142.09094 -.02499 (142*2π)/191413 weeks
143-.00053 .06637 (143*2π)/191413 weeks
144.06108 -.00885 (144*2π)/191413 weeks
145-.11347 -.07476 (145*2π)/191413 weeks
146-.05102 .13214 (146*2π)/191413 weeks
147.1429 -.15354 (147*2π)/191413 weeks
148-.04514 .03446 (148*2π)/191413 weeks
149.01327 -.02776 (149*2π)/191413 weeks
150.02821 -.01864 (150*2π)/191413 weeks
151.01094 -.0355 (151*2π)/191413 weeks
152-.06382 -.00909 (152*2π)/191413 weeks
153.04061 -.01362 (153*2π)/191413 weeks
154.05615 -.09474 (154*2π)/191412 weeks
155-.05067 .00048 (155*2π)/191412 weeks
156.01354 -.02387 (156*2π)/191412 weeks
157.03166 .01843 (157*2π)/191412 weeks
158-.01462 -.0443 (158*2π)/191412 weeks
159.03755 .05516 (159*2π)/191412 weeks
160.03572 -.04569 (160*2π)/191412 weeks
161-.06731 .01934 (161*2π)/191412 weeks
162-.02769 -.00492 (162*2π)/191412 weeks
163-.01227 -.03617 (163*2π)/191412 weeks
164-.01884 -.07252 (164*2π)/191412 weeks
165.09904 -.0013 (165*2π)/191412 weeks
166.05751 -.04635 (166*2π)/191412 weeks
167-.05251 .05557 (167*2π)/191411 weeks
168.0307 -.02026 (168*2π)/191411 weeks
169-.06283 .00025 (169*2π)/191411 weeks
170.02285 -.10259 (170*2π)/191411 weeks
171-.07615 .05484 (171*2π)/191411 weeks
172.01221 -.0024 (172*2π)/191411 weeks
173-.00674 -.02528 (173*2π)/191411 weeks
174.00862 .03021 (174*2π)/191411 weeks
175.02101 -.13175 (175*2π)/191411 weeks
176-.03344 .10268 (176*2π)/191411 weeks
177.04448 -.04522 (177*2π)/191411 weeks
178-.05707 -.04668 (178*2π)/191411 weeks
179-.04569 .01325 (179*2π)/191411 weeks
180.0711 -.04144 (180*2π)/191411 weeks
181.0223 -.02651 (181*2π)/191411 weeks
182-.08958 .01941 (182*2π)/191411 weeks
183.10029 .07119 (183*2π)/191410 weeks
184-.08652 -.07919 (184*2π)/191410 weeks
185.01577 .03933 (185*2π)/191410 weeks
186.00833 -.0747 (186*2π)/191410 weeks
187-.04415 .05559 (187*2π)/191410 weeks
188.02936 -.08989 (188*2π)/191410 weeks
189-.11924 .03444 (189*2π)/191410 weeks
190.10945 -.00608 (190*2π)/191410 weeks
191-.04637 -.03727 (191*2π)/191410 weeks
192.0687 -.02197 (192*2π)/191410 weeks
193-.05457 -.00971 (193*2π)/191410 weeks
194-.00241 .08928 (194*2π)/191410 weeks
195-.01627 -.06431 (195*2π)/191410 weeks
196-.05695 .08352 (196*2π)/191410 weeks
197.05903 -.07862 (197*2π)/191410 weeks
198-.06661 -.08665 (198*2π)/191410 weeks
199.12996 .06216 (199*2π)/191410 weeks
200-.02554 -.04527 (200*2π)/191410 weeks
201-.02332 .02438 (201*2π)/191410 weeks
202-.04987 -.01922 (202*2π)/19149 weeks
203.0092 .02454 (203*2π)/19149 weeks
204.04155 -.07246 (204*2π)/19149 weeks
205-.00018 .01203 (205*2π)/19149 weeks
206.02524 -.02679 (206*2π)/19149 weeks
207-.01991 -.00717 (207*2π)/19149 weeks
208-.00027 .01585 (208*2π)/19149 weeks
209.00228 -.06554 (209*2π)/19149 weeks
210.00234 .04239 (210*2π)/19149 weeks
211.02174 -.03937 (211*2π)/19149 weeks
212.02816 -.02502 (212*2π)/19149 weeks
213.00878 .01821 (213*2π)/19149 weeks
214-.03208 .02659 (214*2π)/19149 weeks
215.0185 .01277 (215*2π)/19149 weeks
216-.0452 .01252 (216*2π)/19149 weeks
217.02828 -.03979 (217*2π)/19149 weeks
218-.01893 .01108 (218*2π)/19149 weeks
219-.00116 .01996 (219*2π)/19149 weeks
220.02112 -.10249 (220*2π)/19149 weeks
221-.05603 .07206 (221*2π)/19149 weeks
222.04827 -.06602 (222*2π)/19149 weeks
223.0086 .03849 (223*2π)/19149 weeks
224.03484 .01334 (224*2π)/19149 weeks
225-.03379 .01728 (225*2π)/19149 weeks
226.03767 .05437 (226*2π)/19148 weeks
227-.02166 -.04385 (227*2π)/19148 weeks
228-.02581 .01055 (228*2π)/19148 weeks
229-.00548 .00927 (229*2π)/19148 weeks
230.02284 -.01104 (230*2π)/19148 weeks
231.0027 -.05715 (231*2π)/19148 weeks
232-.01708 .01251 (232*2π)/19148 weeks
233.08334 -.02466 (233*2π)/19148 weeks
234-.03783 .00034 (234*2π)/19148 weeks
235.0286 .01903 (235*2π)/19148 weeks
236-.04513 .07762 (236*2π)/19148 weeks
237-.04379 -.07834 (237*2π)/19148 weeks
238-.00417 .01722 (238*2π)/19148 weeks
239.02203 -.01231 (239*2π)/19148 weeks
240.06669 -.05504 (240*2π)/19148 weeks
241-.04478 .00801 (241*2π)/19148 weeks
242.04388 .02921 (242*2π)/19148 weeks
243-.01523 .01169 (243*2π)/19148 weeks
244.0073 .02763 (244*2π)/19148 weeks
245-.07987 .0002 (245*2π)/19148 weeks
246.01932 -.02842 (246*2π)/19148 weeks
247-.0315 -.05311 (247*2π)/19148 weeks
248.02225 -.00889 (248*2π)/19148 weeks
249.03134 -.01543 (249*2π)/19148 weeks
250.03465 -.00821 (250*2π)/19148 weeks
251-.05786 -.01612 (251*2π)/19148 weeks
252-.00177 .00088 (252*2π)/19148 weeks
253.03885 -.00747 (253*2π)/19148 weeks
254-.05365 .01128 (254*2π)/19148 weeks
255.07409 -.02594 (255*2π)/19148 weeks
256-.06308 -.0569 (256*2π)/19147 weeks
257.03723 .00335 (257*2π)/19147 weeks
258-.00282 -.01826 (258*2π)/19147 weeks
259.03854 -.00036 (259*2π)/19147 weeks
260-.00355 .02391 (260*2π)/19147 weeks
261-.01617 -.0199 (261*2π)/19147 weeks
262.01669 -.01462 (262*2π)/19147 weeks
263-.06878 -.05204 (263*2π)/19147 weeks
264.0032 .07579 (264*2π)/19147 weeks
265.00693 -.08557 (265*2π)/19147 weeks
266-.02154 .00916 (266*2π)/19147 weeks
267.06548 -.07181 (267*2π)/19147 weeks
268.03125 .00009 (268*2π)/19147 weeks
269.01761 -.04008 (269*2π)/19147 weeks
270-.01548 .02724 (270*2π)/19147 weeks
271.02043 .0013 (271*2π)/19147 weeks
272.00304 -.01664 (272*2π)/19147 weeks
273-.01283 .03186 (273*2π)/19147 weeks
274.02176 -.01483 (274*2π)/19147 weeks
275-.05529 -.04058 (275*2π)/19147 weeks
276.01716 -.03104 (276*2π)/19147 weeks
277-.02394 -.02127 (277*2π)/19147 weeks
278.0644 .02693 (278*2π)/19147 weeks
279-.0103 -.03133 (279*2π)/19147 weeks
280-.00132 .03794 (280*2π)/19147 weeks
281.01306 -.02879 (281*2π)/19147 weeks
282.00779 .03135 (282*2π)/19147 weeks
283.0235 -.04835 (283*2π)/19147 weeks
284-.08758 .0066 (284*2π)/19147 weeks
285.0443 .02384 (285*2π)/19147 weeks
286-.02443 -.04013 (286*2π)/19147 weeks
287-.00683 .01078 (287*2π)/19147 weeks
288.00878 -.00582 (288*2π)/19147 weeks
289.02041 .03474 (289*2π)/19147 weeks
290-.00996 -.06341 (290*2π)/19147 weeks
291-.02934 -.00342 (291*2π)/19147 weeks
292.00295 .01712 (292*2π)/19147 weeks
293-.00041 -.02866 (293*2π)/19147 weeks
294-.04504 -.01467 (294*2π)/19147 weeks
295-.0309 .01735 (295*2π)/19146 weeks
296.05935 -.02286 (296*2π)/19146 weeks
297-.0364 -.05362 (297*2π)/19146 weeks
298.01461 .05242 (298*2π)/19146 weeks
299.02424 -.00822 (299*2π)/19146 weeks
300-.04356 -.0177 (300*2π)/19146 weeks
301.01329 .02167 (301*2π)/19146 weeks
302-.01273 .0115 (302*2π)/19146 weeks
303.01229 -.01372 (303*2π)/19146 weeks
304-.03455 -.00172 (304*2π)/19146 weeks
305-.00467 -.03026 (305*2π)/19146 weeks
306-.01554 -.03863 (306*2π)/19146 weeks
307.04162 .00673 (307*2π)/19146 weeks
308-.01655 -.02588 (308*2π)/19146 weeks
309.01867 .01098 (309*2π)/19146 weeks
310-.00883 -.00921 (310*2π)/19146 weeks
311.007 -.04424 (311*2π)/19146 weeks
312-.02129 .00681 (312*2π)/19146 weeks
313-.00765 .0041 (313*2π)/19146 weeks
314.00219 -.05311 (314*2π)/19146 weeks
315-.01701 -.00239 (315*2π)/19146 weeks
316.00848 .01642 (316*2π)/19146 weeks
317.0153 -.06835 (317*2π)/19146 weeks
318.00512 .0487 (318*2π)/19146 weeks
319-.02742 -.07271 (319*2π)/19146 weeks
320.00553 .02419 (320*2π)/19146 weeks
321.02122 -.03184 (321*2π)/19146 weeks
322-.06347 .02404 (322*2π)/19146 weeks
323.03208 -.00599 (323*2π)/19146 weeks
324-.03742 -.03632 (324*2π)/19146 weeks
325.02777 -.01316 (325*2π)/19146 weeks
326-.0164 -.06455 (326*2π)/19146 weeks
327-.00415 .04 (327*2π)/19146 weeks
328.03926 -.0359 (328*2π)/19146 weeks
329-.02862 .02737 (329*2π)/19146 weeks
330.01746 -.03119 (330*2π)/19146 weeks
331-.01581 -.00292 (331*2π)/19146 weeks
332.02809 .02614 (332*2π)/19146 weeks
333-.04848 -.06197 (333*2π)/19146 weeks
334.01622 .02634 (334*2π)/19146 weeks
335-.00208 -.0384 (335*2π)/19146 weeks
336.00981 .00403 (336*2π)/19146 weeks
337-.00595 -.01002 (337*2π)/19146 weeks
338-.06039 .02819 (338*2π)/19146 weeks
339.06964 -.04599 (339*2π)/19146 weeks
340-.08092 .00827 (340*2π)/19146 weeks
341.08528 -.00232 (341*2π)/19146 weeks
342-.06183 -.01137 (342*2π)/19146 weeks
343.00855 .05027 (343*2π)/19146 weeks
344-.03132 -.06257 (344*2π)/19146 weeks
345.00259 .0315 (345*2π)/19146 weeks
346.00121 -.05411 (346*2π)/19146 weeks
347-.05645 .03792 (347*2π)/19146 weeks
348.04283 -.01288 (348*2π)/19146 weeks
349-.03102 -.00712 (349*2π)/19145 weeks
350.01831 -.01611 (350*2π)/19145 weeks
351.00624 .02684 (351*2π)/19145 weeks
352-.00863 .01192 (352*2π)/19145 weeks
353-.04612 -.03092 (353*2π)/19145 weeks
354.01913 .02646 (354*2π)/19145 weeks
355-.02342 -.0527 (355*2π)/19145 weeks
356.00212 .02487 (356*2π)/19145 weeks
357-.00105 -.02738 (357*2π)/19145 weeks
358-.03507 -.02048 (358*2π)/19145 weeks
359.04523 -.02243 (359*2π)/19145 weeks
360-.02438 -.01397 (360*2π)/19145 weeks
361.05018 -.00231 (361*2π)/19145 weeks
362-.01666 .00277 (362*2π)/19145 weeks
363-.03358 -.00262 (363*2π)/19145 weeks
364.01328 -.01792 (364*2π)/19145 weeks
365-.00439 .04185 (365*2π)/19145 weeks
366-.0273 -.07457 (366*2π)/19145 weeks
367.02368 .03421 (367*2π)/19145 weeks
368-.01899 -.03119 (368*2π)/19145 weeks
369.01566 -.00661 (369*2π)/19145 weeks
370.02659 -.03969 (370*2π)/19145 weeks
371-.07543 .00085 (371*2π)/19145 weeks
372.06844 -.00217 (372*2π)/19145 weeks
373-.05398 -.02795 (373*2π)/19145 weeks
374.01111 .01166 (374*2π)/19145 weeks
375.01425 -.03806 (375*2π)/19145 weeks
376-.02626 .04191 (376*2π)/19145 weeks
377.05396 -.03387 (377*2π)/19145 weeks
378-.04992 .01159 (378*2π)/1914