Back to list of Stocks    See Also: Seasonal Analysis of ALGIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ALGI (AMER LOCKER GROUP)


ALGI (AMER LOCKER GROUP) appears to have interesting cyclic behaviour every 146 weeks (.9095*sine), 158 weeks (.7858*sine), and 136 weeks (.7049*cosine).

ALGI (AMER LOCKER GROUP) has an average price of 3.64 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/25/1974 to 9/12/2016 for ALGI (AMER LOCKER GROUP), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
03.63909   0 
1-2.97701 -3.17558 (1*2π)/18991,899 weeks
2-1.02742 2.41944 (2*2π)/1899950 weeks
31.24305 -.81204 (3*2π)/1899633 weeks
4-.24547 .30272 (4*2π)/1899475 weeks
5-.43122 -.9249 (5*2π)/1899380 weeks
6-.31066 1.06897 (6*2π)/1899317 weeks
7.79328 -.66836 (7*2π)/1899271 weeks
8-1.24222 .20146 (8*2π)/1899237 weeks
91.07427 .67005 (9*2π)/1899211 weeks
10-.53239 -.54674 (10*2π)/1899190 weeks
11.40361 .65678 (11*2π)/1899173 weeks
12-.09009 -.78581 (12*2π)/1899158 weeks
13-.39892 .90954 (13*2π)/1899146 weeks
14.70486 -.39214 (14*2π)/1899136 weeks
15-.47949 .12415 (15*2π)/1899127 weeks
16.56526 -.17019 (16*2π)/1899119 weeks
17-.52987 -.11605 (17*2π)/1899112 weeks
18.33706 .36549 (18*2π)/1899106 weeks
19-.25288 -.48547 (19*2π)/1899100 weeks
20.07198 .46707 (20*2π)/189995 weeks
21.00959 -.38868 (21*2π)/189990 weeks
22-.05883 .34821 (22*2π)/189986 weeks
23.17994 -.51487 (23*2π)/189983 weeks
24-.59876 .3052 (24*2π)/189979 weeks
25.47221 .24432 (25*2π)/189976 weeks
26-.11931 -.20834 (26*2π)/189973 weeks
27.08554 .1205 (27*2π)/189970 weeks
28-.12928 -.11916 (28*2π)/189968 weeks
29.03214 .2661 (29*2π)/189965 weeks
30.10033 -.24126 (30*2π)/189963 weeks
31-.17816 .15197 (31*2π)/189961 weeks
32.17232 -.04004 (32*2π)/189959 weeks
33-.0458 -.05824 (33*2π)/189958 weeks
34.04165 -.02769 (34*2π)/189956 weeks
35-.09089 -.02525 (35*2π)/189954 weeks
36.03162 .05233 (36*2π)/189953 weeks
37.00502 .02503 (37*2π)/189951 weeks
38.08823 -.0407 (38*2π)/189950 weeks
39-.10558 -.07774 (39*2π)/189949 weeks
40-.00683 .10598 (40*2π)/189947 weeks
41.08348 -.07666 (41*2π)/189946 weeks
42-.07028 -.00619 (42*2π)/189945 weeks
43-.0358 .05037 (43*2π)/189944 weeks
44.07546 .03834 (44*2π)/189943 weeks
45.00924 -.04552 (45*2π)/189942 weeks
46-.06418 .0104 (46*2π)/189941 weeks
47.01883 .02246 (47*2π)/189940 weeks
48-.01258 .05852 (48*2π)/189940 weeks
49.11552 -.05663 (49*2π)/189939 weeks
50-.13775 -.00886 (50*2π)/189938 weeks
51.11074 .08872 (51*2π)/189937 weeks
52.01316 -.13289 (52*2π)/189937 weeks
53-.02092 .0482 (53*2π)/189936 weeks
54-.02503 -.04631 (54*2π)/189935 weeks
55-.01452 .15142 (55*2π)/189935 weeks
56.12656 -.10533 (56*2π)/189934 weeks
57-.14506 -.02522 (57*2π)/189933 weeks
58.07862 .0637 (58*2π)/189933 weeks
59-.08164 -.03081 (59*2π)/189932 weeks
60.13545 .04059 (60*2π)/189932 weeks
61-.12947 -.15365 (61*2π)/189931 weeks
62-.00297 .2352 (62*2π)/189931 weeks
63.14521 -.14217 (63*2π)/189930 weeks
64-.16712 .05075 (64*2π)/189930 weeks
65.15108 -.01514 (65*2π)/189929 weeks
66-.12783 .0103 (66*2π)/189929 weeks
67.14032 .0395 (67*2π)/189928 weeks
68-.09446 -.11483 (68*2π)/189928 weeks
69-.01007 .11851 (69*2π)/189928 weeks
70.02235 .00001 (70*2π)/189927 weeks
71.12413 .06027 (71*2π)/189927 weeks
72-.06782 -.21443 (72*2π)/189926 weeks
73-.12843 .23341 (73*2π)/189926 weeks
74.23132 -.05642 (74*2π)/189926 weeks
75-.18461 -.07281 (75*2π)/189925 weeks
76.09355 .1195 (76*2π)/189925 weeks
77-.00607 -.10722 (77*2π)/189925 weeks
78.00515 .04328 (78*2π)/189924 weeks
79-.03077 -.06181 (79*2π)/189924 weeks
80-.03147 .10178 (80*2π)/189924 weeks
81.03561 -.0444 (81*2π)/189923 weeks
82-.02231 .08739 (82*2π)/189923 weeks
83.08365 -.09898 (83*2π)/189923 weeks
84-.15968 .0292 (84*2π)/189923 weeks
85.11236 .09924 (85*2π)/189922 weeks
86-.01043 -.09504 (86*2π)/189922 weeks
87.00355 .06191 (87*2π)/189922 weeks
88-.00687 -.05337 (88*2π)/189922 weeks
89-.02151 .06559 (89*2π)/189921 weeks
90.04554 -.0454 (90*2π)/189921 weeks
91-.06895 .01513 (91*2π)/189921 weeks
92.06643 .01853 (92*2π)/189921 weeks
93-.02676 -.02844 (93*2π)/189920 weeks
94.01015 .00344 (94*2π)/189920 weeks
95-.0377 .01081 (95*2π)/189920 weeks
96.05249 .04875 (96*2π)/189920 weeks
97-.01561 -.09462 (97*2π)/189920 weeks
98-.04456 .09099 (98*2π)/189919 weeks
99.0515 -.01734 (99*2π)/189919 weeks
100-.0465 -.01672 (100*2π)/189919 weeks
101-.00557 .0212 (101*2π)/189919 weeks
102.0013 .00102 (102*2π)/189919 weeks
103.02604 -.00599 (103*2π)/189918 weeks
104-.03574 -.01685 (104*2π)/189918 weeks
105.01638 .02146 (105*2π)/189918 weeks
106.0002 -.01066 (106*2π)/189918 weeks
107-.01605 .02962 (107*2π)/189918 weeks
108.04306 -.01215 (108*2π)/189918 weeks
109-.03663 .00402 (109*2π)/189917 weeks
110.01419 -.00611 (110*2π)/189917 weeks
111-.02125 -.01242 (111*2π)/189917 weeks
112.01703 .03567 (112*2π)/189917 weeks
113.0071 -.06624 (113*2π)/189917 weeks
114-.02143 .03952 (114*2π)/189917 weeks
115.0198 -.00975 (115*2π)/189917 weeks
116-.01392 -.00617 (116*2π)/189916 weeks
117-.01141 .00685 (117*2π)/189916 weeks
118.00797 .00338 (118*2π)/189916 weeks
119.01832 -.00523 (119*2π)/189916 weeks
120-.01958 .01106 (120*2π)/189916 weeks
121.03197 -.01859 (121*2π)/189916 weeks
122-.01325 -.00918 (122*2π)/189916 weeks
123-.01434 .03959 (123*2π)/189915 weeks
124.02454 -.01073 (124*2π)/189915 weeks
125-.01264 .015 (125*2π)/189915 weeks
126-.00166 -.01005 (126*2π)/189915 weeks
127-.00188 .01171 (127*2π)/189915 weeks
128.0201 -.0192 (128*2π)/189915 weeks
129-.04274 -.00205 (129*2π)/189915 weeks
130.0433 .03516 (130*2π)/189915 weeks
131.00528 -.03967 (131*2π)/189914 weeks
132-.00968 .02003 (132*2π)/189914 weeks
133.02496 -.0012 (133*2π)/189914 weeks
134-.03217 -.02689 (134*2π)/189914 weeks
135.00521 .0185 (135*2π)/189914 weeks
136-.00393 .00606 (136*2π)/189914 weeks
137.00761 -.0048 (137*2π)/189914 weeks
138.00206 -.00088 (138*2π)/189914 weeks
139.00018 -.00422 (139*2π)/189914 weeks
140-.0275 .00137 (140*2π)/189914 weeks
141.0377 .03973 (141*2π)/189913 weeks
142.00098 -.03152 (142*2π)/189913 weeks
143-.00133 .02393 (143*2π)/189913 weeks
144.01008 -.01047 (144*2π)/189913 weeks
145-.00797 .01113 (145*2π)/189913 weeks
146.01726 -.01085 (146*2π)/189913 weeks
147-.01571 .02285 (147*2π)/189913 weeks
148.03147 -.01495 (148*2π)/189913 weeks
149-.02664 -.00256 (149*2π)/189913 weeks
150.02444 .0184 (150*2π)/189913 weeks
151-.01287 -.03758 (151*2π)/189913 weeks
152-.02016 .05904 (152*2π)/189912 weeks
153.04549 -.02851 (153*2π)/189912 weeks
154-.03714 -.0098 (154*2π)/189912 weeks
155-.00087 .03051 (155*2π)/189912 weeks
156.00037 .0069 (156*2π)/189912 weeks
157.02117 -.01826 (157*2π)/189912 weeks
158-.05346 .00465 (158*2π)/189912 weeks
159.03556 .05018 (159*2π)/189912 weeks
160.01942 -.062 (160*2π)/189912 weeks
161-.06061 .02134 (161*2π)/189912 weeks
162.04953 .01644 (162*2π)/189912 weeks
163-.01836 -.00556 (163*2π)/189912 weeks
164.02544 .02238 (164*2π)/189912 weeks
165.01136 -.02922 (165*2π)/189912 weeks
166-.02671 .0121 (166*2π)/189911 weeks
167.01948 -.00466 (167*2π)/189911 weeks
168-.02012 .007 (168*2π)/189911 weeks
169.00499 -.00179 (169*2π)/189911 weeks
170-.00969 -.01098 (170*2π)/189911 weeks
171-.00225 .00946 (171*2π)/189911 weeks
172-.00997 .00519 (172*2π)/189911 weeks
173.01315 -.00678 (173*2π)/189911 weeks
174-.02957 .00421 (174*2π)/189911 weeks
175.03026 .03311 (175*2π)/189911 weeks
176.00787 -.03146 (176*2π)/189911 weeks
177-.02463 .0072 (177*2π)/189911 weeks
178.0061 .00195 (178*2π)/189911 weeks
179.00342 .00671 (179*2π)/189911 weeks
180-.00798 .0021 (180*2π)/189911 weeks
181.01826 .00663 (181*2π)/189910 weeks
182.00238 -.02578 (182*2π)/189910 weeks
183-.02843 -.00103 (183*2π)/189910 weeks
184.02205 .02637 (184*2π)/189910 weeks
185-.00325 -.01606 (185*2π)/189910 weeks
186.00441 .0064 (186*2π)/189910 weeks
187-.00247 -.01321 (187*2π)/189910 weeks
188-.01107 .00849 (188*2π)/189910 weeks
189-.00326 -.00751 (189*2π)/189910 weeks
190.00832 .01694 (190*2π)/189910 weeks
191.00709 -.02343 (191*2π)/189910 weeks
192-.03079 .01623 (192*2π)/189910 weeks
193.03749 .03036 (193*2π)/189910 weeks
194-.01151 -.04455 (194*2π)/189910 weeks
195-.00958 .02936 (195*2π)/189910 weeks
196.00181 -.01258 (196*2π)/189910 weeks
197-.01421 .01546 (197*2π)/189910 weeks
198.02586 -.00549 (198*2π)/189910 weeks
199-.02295 -.00797 (199*2π)/189910 weeks
200.02204 .01908 (200*2π)/18999 weeks
201.0005 -.01534 (201*2π)/18999 weeks
202.01401 -.00242 (202*2π)/18999 weeks
203-.01727 -.01828 (203*2π)/18999 weeks
204-.00923 .0344 (204*2π)/18999 weeks
205.02321 -.02605 (205*2π)/18999 weeks
206-.03221 .00929 (206*2π)/18999 weeks
207.02383 .00249 (207*2π)/18999 weeks
208-.02196 -.00887 (208*2π)/18999 weeks
209.01811 .02374 (209*2π)/18999 weeks
210-.01352 -.03086 (210*2π)/18999 weeks
211-.00318 .04142 (211*2π)/18999 weeks
212.01892 -.02046 (212*2π)/18999 weeks
213-.00641 .01022 (213*2π)/18999 weeks
214.00667 -.0221 (214*2π)/18999 weeks
215-.03418 .02358 (215*2π)/18999 weeks
216.07714 .00316 (216*2π)/18999 weeks
217-.06256 -.04535 (217*2π)/18999 weeks
218.01643 .06962 (218*2π)/18999 weeks
219.02045 -.04005 (219*2π)/18999 weeks
220-.01562 .02176 (220*2π)/18999 weeks
221.01826 -.0364 (221*2π)/18999 weeks
222-.0545 .02388 (222*2π)/18999 weeks
223.0593 .00561 (223*2π)/18999 weeks
224-.04127 -.03199 (224*2π)/18998 weeks
225.00725 .04467 (225*2π)/18998 weeks
226.00696 -.0292 (226*2π)/18998 weeks
227-.00025 .03125 (227*2π)/18998 weeks
228.01247 -.03503 (228*2π)/18998 weeks
229-.03608 .03411 (229*2π)/18998 weeks
230.04338 .0019 (230*2π)/18998 weeks
231-.02564 -.01713 (231*2π)/18998 weeks
232.0261 .01404 (232*2π)/18998 weeks
233-.0214 -.02091 (233*2π)/18998 weeks
234.00245 .02771 (234*2π)/18998 weeks
235.01589 -.00491 (235*2π)/18998 weeks
236-.01329 -.00434 (236*2π)/18998 weeks
237.00954 .00329 (237*2π)/18998 weeks
238-.01564 .00005 (238*2π)/18998 weeks
239.0053 -.00597 (239*2π)/18998 weeks
240-.01905 .01075 (240*2π)/18998 weeks
241.03003 .00134 (241*2π)/18998 weeks
242-.023 -.01998 (242*2π)/18998 weeks
243.00189 .01632 (243*2π)/18998 weeks
244-.01152 -.00576 (244*2π)/18998 weeks
245-.00021 .02921 (245*2π)/18998 weeks
246.02884 -.0099 (246*2π)/18998 weeks
247-.01371 -.01701 (247*2π)/18998 weeks
248-.00134 .01087 (248*2π)/18998 weeks
249.0021 -.00101 (249*2π)/18998 weeks
250-.00074 -.00459 (250*2π)/18998 weeks
251-.00348 .00426 (251*2π)/18998 weeks
252.00166 -.00113 (252*2π)/18998 weeks
253.00489 -.00404 (253*2π)/18998 weeks
254-.00774 -.00436 (254*2π)/18997 weeks
255-.00066 .00551 (255*2π)/18997 weeks
256-.0003 -.00147 (256*2π)/18997 weeks
257.00439 .01018 (257*2π)/18997 weeks
258.00826 -.01477 (258*2π)/18997 weeks
259-.02418 .00793 (259*2π)/18997 weeks
260.02093 .01295 (260*2π)/18997 weeks
261-.00623 -.01537 (261*2π)/18997 weeks
262-.00584 .02896 (262*2π)/18997 weeks
263.02732 -.00866 (263*2π)/18997 weeks
264-.01505 -.0269 (264*2π)/18997 weeks
265-.01206 .01555 (265*2π)/18997 weeks
266.01031 .00175 (266*2π)/18997 weeks
267-.00069 -.0062 (267*2π)/18997 weeks
268-.01153 .00798 (268*2π)/18997 weeks
269.02102 .00017 (269*2π)/18997 weeks
270-.01649 -.01732 (270*2π)/18997 weeks
271-.00655 .02209 (271*2π)/18997 weeks
272.00763 -.00499 (272*2π)/18997 weeks
273.00544 .00603 (273*2π)/18997 weeks
274-.00654 -.01059 (274*2π)/18997 weeks
275.00493 .01711 (275*2π)/18997 weeks
276.01203 -.02075 (276*2π)/18997 weeks
277-.02428 -.00019 (277*2π)/18997 weeks
278.01893 .01696 (278*2π)/18997 weeks
279-.01614 -.00971 (279*2π)/18997 weeks
280.01862 .01566 (280*2π)/18997 weeks
281-.00366 -.02406 (281*2π)/18997 weeks
282-.01497 .01294 (282*2π)/18997 weeks
283.01544 .00036 (283*2π)/18997 weeks
284-.00513 .00483 (284*2π)/18997 weeks
285.01286 -.02271 (285*2π)/18997 weeks
286-.02374 .01382 (286*2π)/18997 weeks
287.02277 .00992 (287*2π)/18997 weeks
288-.00656 -.01685 (288*2π)/18997 weeks
289-.00604 .0227 (289*2π)/18997 weeks
290.00727 -.0197 (290*2π)/18997 weeks
291-.01332 .0224 (291*2π)/18997 weeks
292.01579 -.00895 (292*2π)/18997 weeks
293-.0154 -.00175 (293*2π)/18996 weeks
294.00696 .00728 (294*2π)/18996 weeks
295-.0064 .00348 (295*2π)/18996 weeks
296.0232 -.00881 (296*2π)/18996 weeks
297-.02202 -.00634 (297*2π)/18996 weeks
298.01481 .01231 (298*2π)/18996 weeks
299-.0013 -.01705 (299*2π)/18996 weeks
300-.01155 .02232 (300*2π)/18996 weeks
301.01669 -.01231 (301*2π)/18996 weeks
302-.01458 .00712 (302*2π)/18996 weeks
303.01309 -.00789 (303*2π)/18996 weeks
304-.02067 -.01052 (304*2π)/18996 weeks
305.00073 .02406 (305*2π)/18996 weeks
306.00507 -.01921 (306*2π)/18996 weeks
307.00125 .0171 (307*2π)/18996 weeks
308.00817 -.00878 (308*2π)/18996 weeks
309-.00296 .00624 (309*2π)/18996 weeks
310.01218 -.00693 (310*2π)/18996 weeks
311-.01385 -.00394 (311*2π)/18996 weeks
312.00401 .00996 (312*2π)/18996 weeks
313-.00272 .00627 (313*2π)/18996 weeks
314.01554 -.00253 (314*2π)/18996 weeks
315-.00732 -.0139 (315*2π)/18996 weeks
316-.00596 .00469 (316*2π)/18996 weeks
317-.00983 .00542 (317*2π)/18996 weeks
318.02592 .0068 (318*2π)/18996 weeks
319-.01613 -.0263 (319*2π)/18996 weeks
320-.0062 .03424 (320*2π)/18996 weeks
321.02279 -.01149 (321*2π)/18996 weeks
322-.01902 -.01043 (322*2π)/18996 weeks
323.00928 .00981 (323*2π)/18996 weeks
324-.00812 -.0064 (324*2π)/18996 weeks
325.00137 .0095 (325*2π)/18996 weeks
326.00215 -.00774 (326*2π)/18996 weeks
327-.00218 .00674 (327*2π)/18996 weeks
328-.00585 -.0031 (328*2π)/18996 weeks
329.01592 .02251 (329*2π)/18996 weeks
330.0028 -.03478 (330*2π)/18996 weeks
331-.02296 .01883 (331*2π)/18996 weeks
332.03724 -.0039 (332*2π)/18996 weeks
333-.03603 -.01868 (333*2π)/18996 weeks
334.02234 .02797 (334*2π)/18996 weeks
335-.00458 -.03334 (335*2π)/18996 weeks
336-.00809 .02495 (336*2π)/18996 weeks
337.01392 -.01621 (337*2π)/18996 weeks
338-.0259 .01377 (338*2π)/18996 weeks
339.01681 .00319 (339*2π)/18996 weeks
340.00111 .01011 (340*2π)/18996 weeks
341.02218 -.0227 (341*2π)/18996 weeks
342-.04541 -.00536 (342*2π)/18996 weeks
343.03236 .04086 (343*2π)/18996 weeks
344.00002 -.04266 (344*2π)/18996 weeks
345-.01135 .0272 (345*2π)/18996 weeks
346.01033 -.01364 (346*2π)/18995 weeks
347-.01883 .01362 (347*2π)/18995 weeks
348.03482 -.00692 (348*2π)/18995 weeks
349-.03771 -.01799 (349*2π)/18995 weeks
350.01992 .02668 (350*2π)/18995 weeks
351-.00418 -.01663 (351*2π)/18995 weeks
352.01325 .0011 (352*2π)/18995 weeks
353-.0164 -.01477 (353*2π)/18995 weeks
354.00079 .03656 (354*2π)/18995 weeks
355.02892 -.03392 (355*2π)/18995 weeks
356-.03694 .01463 (356*2π)/18995 weeks
357.03019 .00736 (357*2π)/18995 weeks
358-.02533 -.01032 (358*2π)/18995 weeks
359.02892 .02041 (359*2π)/18995 weeks
360-.02128 -.04178 (360*2π)/18995 weeks
361-.00516 .04083 (361*2π)/18995 weeks
362.01975 -.01583 (362*2π)/18995 weeks
363-.012 .00247 (363*2π)/18995 weeks
364.01082 .00239 (364*2π)/18995 weeks
365-.01197 .009 (365*2π)/18995 weeks
366.03283 -.00048 (366*2π)/18995 weeks
367-.02713 -.02851 (367*2π)/18995 weeks
368-.00569 .0282 (368*2π)/18995 weeks
369.01573 -.01042 (369*2π)/18995 weeks
370-.00883 .00928 (370*2π)/18995 weeks
371.01892 -.01703 (371*2π)/18995 weeks
372-.02895 .00381 (372*2π)/18995 weeks
373.01787 .01753 (373*2π)/18995 weeks
374-.00177 -.0098 (374*2π)/18995 weeks
375.0004 .00421 (375*2π)/18995 weeks
376-.01237 .00025 (376*2π)/18995 weeks
377.01864 .01567 (377*2π)/18995 weeks
378.00431 -.02152 (378*2π)/18995 weeks
379-.02208 .00868 (379*2π)/18995 weeks
380.02185 .00742 (380*2π)/18995 weeks
381-.00465 -.01054 (381*2π)/18995 weeks
382-.00177 -.00567 (382*2π)/18995 weeks
383-.01869 .01329 (383*2π)/18995 weeks
384.02466 .00751 (384*2π)/18995 weeks
385-.00886 -.01657 (385*2π)/18995 weeks
386.00133 .01229 (386*2π)/18995 weeks
387-.0176 -.01661 (387*2π)/18995 weeks
388.01007