Back to list of Stocks    See Also: Seasonal Analysis of ALEXGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ALEX (Alexander & Baldwin, Inc. Commo)


ALEX (Alexander & Baldwin, Inc. Commo) appears to have interesting cyclic behaviour every 23 weeks (1.1127*cosine), 12 weeks (.8212*sine), and 23 weeks (.7833*sine).

ALEX (Alexander & Baldwin, Inc. Commo) has an average price of 36.44 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 6/14/2012 to 11/21/2016 for ALEX (Alexander & Baldwin, Inc. Commo), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
036.43628   0 
1-3.317 -.72569 (1*2π)/233233 weeks
2-.20373 -1.70734 (2*2π)/233117 weeks
31.13838 -2.31368 (3*2π)/23378 weeks
4-.05898 -1.91265 (4*2π)/23358 weeks
5.41091 -.30213 (5*2π)/23347 weeks
6-.0994 -.51394 (6*2π)/23339 weeks
7-.35382 -.33131 (7*2π)/23333 weeks
8.73797 -.07039 (8*2π)/23329 weeks
9-.02579 -.02732 (9*2π)/23326 weeks
10-1.11271 -.78332 (10*2π)/23323 weeks
11-.54626 -.26084 (11*2π)/23321 weeks
12.30407 -.24526 (12*2π)/23319 weeks
13.71615 .25603 (13*2π)/23318 weeks
14-.1545 -.33314 (14*2π)/23317 weeks
15-.272 -.50115 (15*2π)/23316 weeks
16-.05467 -.53147 (16*2π)/23315 weeks
17.01375 -.42491 (17*2π)/23314 weeks
18-.0588 -.19361 (18*2π)/23313 weeks
19-.3753 -.68397 (19*2π)/23312 weeks
20.45806 -.82121 (20*2π)/23312 weeks
21-.37525 .07961 (21*2π)/23311 weeks
22-.38662 -.4978 (22*2π)/23311 weeks
23-.1738 -.15318 (23*2π)/23310 weeks
24.02511 -.26656 (24*2π)/23310 weeks
25-.38847 -.23264 (25*2π)/2339 weeks
26-.15537 -.37558 (26*2π)/2339 weeks
27-.32559 -.18808 (27*2π)/2339 weeks
28.22177 -.37298 (28*2π)/2338 weeks
29-.08606 -.12421 (29*2π)/2338 weeks
30.03461 -.44813 (30*2π)/2338 weeks
31-.19645 -.38492 (31*2π)/2338 weeks
32-.0615 -.27922 (32*2π)/2337 weeks
33-.2082 -.43915 (33*2π)/2337 weeks
34-.06639 .01977 (34*2π)/2337 weeks
35-.01972 -.20529 (35*2π)/2337 weeks
36-.04862 -.16307 (36*2π)/2336 weeks
37.09808 -.08351 (37*2π)/2336 weeks
38-.20033 -.24195 (38*2π)/2336 weeks
39-.1502 -.20279 (39*2π)/2336 weeks
40-.08177 -.07875 (40*2π)/2336 weeks
41-.28196 -.02287 (41*2π)/2336 weeks
42-.29847 -.10468 (42*2π)/2336 weeks
43.12135 -.01621 (43*2π)/2335 weeks
44-.04466 -.07815 (44*2π)/2335 weeks
45-.05753 -.16842 (45*2π)/2335 weeks
46-.14696 -.18742 (46*2π)/2335 weeks
47-.07664 -.16841 (47*2π)/2335 weeks
48-.02935 -.00428 (48*2π)/2335 weeks
49-.0289 -.17934 (49*2π)/2335 weeks
50-.13622 -.02859 (50*2π)/2335 weeks
51-.20434 -.01095 (51*2π)/2335 weeks
52-.1536 -.13016 (52*2π)/2334 weeks
53.01324 -.17178 (53*2π)/2334 weeks
54-.17543 -.07105 (54*2π)/2334 weeks
55-.15666 -.18158 (55*2π)/2334 weeks
56-.07418 -.24941 (56*2π)/2334 weeks
57-.10971 -.11518 (57*2π)/2334 weeks
58.10374 -.19626 (58*2π)/2334 weeks
59-.2459 -.1434 (59*2π)/2334 weeks
60-.1554 -.21119 (60*2π)/2334 weeks
61-.14674 .05515 (61*2π)/2334 weeks
62-.08197 -.03536 (62*2π)/2334 weeks
63-.13111 -.30579 (63*2π)/2334 weeks
64-.19759 -.1054 (64*2π)/2334 weeks
65-.25374 -.10629 (65*2π)/2334 weeks
66-.06412 -.1214 (66*2π)/2334 weeks
67-.05863 -.11359 (67*2π)/2333 weeks
68-.07639 -.11006 (68*2π)/2333 weeks
69-.05397 -.11432 (69*2π)/2333 weeks
70-.11688 -.15248 (70*2π)/2333 weeks
71.06663 -.06834 (71*2π)/2333 weeks
72-.10522 -.00612 (72*2π)/2333 weeks
73-.10489 -.12496 (73*2π)/2333 weeks
74.05364 -.1485 (74*2π)/2333 weeks
75-.04467 -.07458 (75*2π)/2333 weeks
76-.04245 -.06973 (76*2π)/2333 weeks
77-.0877 -.11933 (77*2π)/2333 weeks
78-.01004 -.13857 (78*2π)/2333 weeks
79.0653 -.01923 (79*2π)/2333 weeks
80-.02567 -.02754 (80*2π)/2333 weeks
81-.0287 -.14904 (81*2π)/2333 weeks
82.03993 .01398 (82*2π)/2333 weeks
83.01585 .05221 (83*2π)/2333 weeks
84-.10758 -.0417 (84*2π)/2333 weeks
85-.05388 -.07214 (85*2π)/2333 weeks
86.08767 .01818 (86*2π)/2333 weeks
87.05591 .01069 (87*2π)/2333 weeks
88.0107 .03491 (88*2π)/2333 weeks
89.10182 .02763 (89*2π)/2333 weeks
90.02982 -.02857 (90*2π)/2333 weeks
91.03131 .13047 (91*2π)/2333 weeks
92-.00253 .00516 (92*2π)/2333 weeks
93.03701 .1274 (93*2π)/2333 weeks
94.14817 .04202 (94*2π)/2332 weeks
95-.06275 -.00754 (95*2π)/2332 weeks
96-.03647 .0057 (96*2π)/2332 weeks
97-.01828 -.02666 (97*2π)/2332 weeks
98-.04519 .16806 (98*2π)/2332 weeks
99-.12115 .05241 (99*2π)/2332 weeks
100-.10773 .09085 (100*2π)/2332 weeks
101-.13767 -.03586 (101*2π)/2332 weeks
102-.1034 .10255 (102*2π)/2332 weeks
103-.06375 .11156 (103*2π)/2332 weeks
104-.19234 .11659 (104*2π)/2332 weeks
105-.17757 .05093 (105*2π)/2332 weeks
106-.10678 .01009 (106*2π)/2332 weeks
107-.18775 .14985 (107*2π)/2332 weeks
108-.1374 -.10058 (108*2π)/2332 weeks
109-.15622 .04626 (109*2π)/2332 weeks
110-.18428 .03086 (110*2π)/2332 weeks
111-.25583 .08883 (111*2π)/2332 weeks
112-.19263 .09953 (112*2π)/2332 weeks
113-.14072 -.04179 (113*2π)/2332 weeks
114-.19333 -.01767 (114*2π)/2332 weeks
115-.28765 .01036 (115*2π)/2332 weeks
116-.24853 .1058 (116*2π)/2332 weeks
117-.24853 -.1058 (117*2π)/2332 weeks
118-.28765 -.01036 (118*2π)/2332 weeks
119-.19333 .01767 (119*2π)/2332 weeks
120-.14072 .04179 (120*2π)/2332 weeks
121-.19263 -.09953 (121*2π)/2332 weeks
122-.25583 -.08883 (122*2π)/2332 weeks
123-.18428 -.03086 (123*2π)/2332 weeks
124-.15622 -.04626 (124*2π)/2332 weeks
125-.1374 .10058 (125*2π)/2332 weeks
126-.18775 -.14985 (126*2π)/2332 weeks
127-.10678 -.01009 (127*2π)/2332 weeks
128-.17757 -.05093 (128*2π)/2332 weeks
129-.19234 -.11659 (129*2π)/2332 weeks
130-.06375 -.11156 (130*2π)/2332 weeks
131-.1034 -.10255 (131*2π)/2332 weeks
132-.13767 .03586 (132*2π)/2332 weeks
133-.10773 -.09085 (133*2π)/2332 weeks
134-.12115 -.05241 (134*2π)/2332 weeks
135-.04519 -.16806 (135*2π)/2332 weeks
136-.01828 .02666 (136*2π)/2332 weeks
137-.03647 -.0057 (137*2π)/2332 weeks
138-.06275 .00754 (138*2π)/2332 weeks
139.14817 -.04202 (139*2π)/2332 weeks
140.03701 -.1274 (140*2π)/2332 weeks
141-.00253 -.00516 (141*2π)/2332 weeks
142.03131 -.13047 (142*2π)/2332 weeks
143.02982 .02857 (143*2π)/2332 weeks
144.10182 -.02763 (144*2π)/2332 weeks
145.0107 -.03491 (145*2π)/2332 weeks
146.05591 -.01069 (146*2π)/2332 weeks
147.08767 -.01818 (147*2π)/2332 weeks
148-.05388 .07214 (148*2π)/2332 weeks
149-.10758 .0417 (149*2π)/2332 weeks
150.01585 -.05221 (150*2π)/2332 weeks
151.03993 -.01398 (151*2π)/2332 weeks
152-.0287 .14904 (152*2π)/2332 weeks
153-.02567 .02754 (153*2π)/2332 weeks
154.0653 .01923 (154*2π)/2332 weeks
155-.01004 .13857 (155*2π)/2332 weeks
156-.0877 .11933 (156*2π)/2331 weeks
157-.04245 .06973 (157*2π)/2331 weeks
158-.04467 .07458 (158*2π)/2331 weeks
159.05364 .1485 (159*2π)/2331 weeks
160-.10489 .12496 (160*2π)/2331 weeks
161-.10522 .00612 (161*2π)/2331 weeks
162.06663 .06834 (162*2π)/2331 weeks
163-.11688 .15248 (163*2π)/2331 weeks
164-.05397 .11432 (164*2π)/2331 weeks
165-.07639 .11006 (165*2π)/2331 weeks
166-.05863 .11359 (166*2π)/2331 weeks
167-.06412 .1214 (167*2π)/2331 weeks
168-.25374 .10629 (168*2π)/2331 weeks
169-.19759 .1054 (169*2π)/2331 weeks
170-.13111 .30579 (170*2π)/2331 weeks
171-.08197 .03536 (171*2π)/2331 weeks
172-.14674 -.05515 (172*2π)/2331 weeks
173-.1554 .21119 (173*2π)/2331 weeks
174-.2459 .1434 (174*2π)/2331 weeks
175.10374 .19626 (175*2π)/2331 weeks
176-.10971 .11518 (176*2π)/2331 weeks
177-.07418 .24941 (177*2π)/2331 weeks
178-.15666 .18158 (178*2π)/2331 weeks
179-.17543 .07105 (179*2π)/2331 weeks
180.01324 .17178 (180*2π)/2331 weeks
181-.1536 .13016 (181*2π)/2331 weeks
182-.20434 .01095 (182*2π)/2331 weeks
183-.13622 .02859 (183*2π)/2331 weeks
184-.0289 .17934 (184*2π)/2331 weeks
185-.02935 .00428 (185*2π)/2331 weeks
186-.07664 .16841 (186*2π)/2331 weeks
187-.14696 .18742 (187*2π)/2331 weeks
188-.05753 .16842 (188*2π)/2331 weeks
189-.04466 .07815 (189*2π)/2331 weeks
190.12135 .01621 (190*2π)/2331 weeks
191-.29847 .10468 (191*2π)/2331 weeks
192-.28196 .02287 (192*2π)/2331 weeks
193-.08177 .07875 (193*2π)/2331 weeks
194-.1502 .20279 (194*2π)/2331 weeks
195-.20033 .24195 (195*2π)/2331 weeks
196.09808 .08351 (196*2π)/2331 weeks
197-.04862 .16307 (197*2π)/2331 weeks
198-.01972 .20529 (198*2π)/2331 weeks
199-.06639 -.01977 (199*2π)/2331 weeks
200-.2082 .43915 (200*2π)/2331 weeks
201-.0615 .27922 (201*2π)/2331 weeks
202-.19645 .38492 (202*2π)/2331 weeks
203.03461 .44813 (203*2π)/2331 weeks
204-.08606 .12421 (204*2π)/2331 weeks
205.22177 .37298 (205*2π)/2331 weeks
206-.32559 .18808 (206*2π)/2331 weeks
207-.15537 .37558 (207*2π)/2331 weeks
208-.38847 .23264 (208*2π)/2331 weeks
209.02511 .26656 (209*2π)/2331 weeks
210-.1738 .15318 (210*2π)/2331 weeks
211-.38662 .4978 (211*2π)/2331 weeks
212-.37525 -.07961 (212*2π)/2331 weeks
213.45806 .82121 (213*2π)/2331 weeks
214-.3753 .68397 (214*2π)/2331 weeks
215-.0588 .19361 (215*2π)/2331 weeks
216.01375 .42491 (216*2π)/2331 weeks
217-.05467 .53147 (217*2π)/2331 weeks
218-.272 .50115 (218*2π)/2331 weeks
219-.1545 .33314 (219*2π)/2331 weeks
220.71615 -.25603 (220*2π)/2331 weeks
221.30407 .24526 (221*2π)/2331 weeks
222-.54626 .26084 (222*2π)/2331 weeks
223-1.11271 .78332 (223*2π)/2331 weeks
224-.02579 .02732 (224*2π)/2331 weeks
225.73797 .07039 (225*2π)/2331 weeks
226-.35382 .33131 (226*2π)/2331 weeks
227-.0994 .51394 (227*2π)/2331 weeks
228.41091 .30213 (228*2π)/2331 weeks
229-.05898 1.91265 (229*2π)/2331 weeks
2301.13838 2.31368 (230*2π)/2331 weeks
231-.20373 1.70734 (231*2π)/2331 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.