Back to list of Stocks    See Also: Seasonal Analysis of AGIOGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AGIO (Agios Pharmaceuticals, Inc.)


AGIO (Agios Pharmaceuticals, Inc.) appears to have interesting cyclic behaviour every 8 weeks (2.075*sine), 16 weeks (1.8196*sine), and 7 weeks (1.7868*cosine).

AGIO (Agios Pharmaceuticals, Inc.) has an average price of 60.13 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 7/24/2013 to 11/28/2016 for AGIO (Agios Pharmaceuticals, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
060.12631   0 
1-36.09708 -7.72034 (1*2π)/176176 weeks
217.51536 -2.88841 (2*2π)/17688 weeks
3-3.64089 -2.83999 (3*2π)/17659 weeks
4-.61327 -5.98998 (4*2π)/17644 weeks
56.61557 1.42203 (5*2π)/17635 weeks
6-2.23147 -.09333 (6*2π)/17629 weeks
74.26056 -2.90548 (7*2π)/17625 weeks
8-2.69771 -1.20715 (8*2π)/17622 weeks
9-.77977 -1.81298 (9*2π)/17620 weeks
10-.78962 -.34873 (10*2π)/17618 weeks
11.85771 -1.81961 (11*2π)/17616 weeks
12-.57537 -.56144 (12*2π)/17615 weeks
13-.8459 -1.1007 (13*2π)/17614 weeks
14.77484 -1.46653 (14*2π)/17613 weeks
151.25857 -.61667 (15*2π)/17612 weeks
16-.15911 -.42049 (16*2π)/17611 weeks
17.44523 .04458 (17*2π)/17610 weeks
18-.40223 -1.10338 (18*2π)/17610 weeks
19.78736 .16778 (19*2π)/1769 weeks
20-.20771 -1.63509 (20*2π)/1769 weeks
21-1.05973 -.23208 (21*2π)/1768 weeks
221.63534 -2.07504 (22*2π)/1768 weeks
23-1.76844 -.54262 (23*2π)/1768 weeks
24-1.78676 .85693 (24*2π)/1767 weeks
25-.41265 -.91303 (25*2π)/1767 weeks
26-.61381 -.09405 (26*2π)/1767 weeks
27.83428 -.84729 (27*2π)/1767 weeks
28-1.19064 .43333 (28*2π)/1766 weeks
29-.65482 -.6018 (29*2π)/1766 weeks
30-.66845 .84615 (30*2π)/1766 weeks
31-.09957 -.55919 (31*2π)/1766 weeks
32.0139 .0561 (32*2π)/1766 weeks
33-.48184 -.17556 (33*2π)/1765 weeks
34-.74014 -.81169 (34*2π)/1765 weeks
35.15909 .61094 (35*2π)/1765 weeks
36-.85343 -.78479 (36*2π)/1765 weeks
37.28841 -.07536 (37*2π)/1765 weeks
38-.65176 .40246 (38*2π)/1765 weeks
39.18554 .18073 (39*2π)/1765 weeks
40-.7202 -.91487 (40*2π)/1764 weeks
41-.09031 -.11947 (41*2π)/1764 weeks
42-.78686 .37597 (42*2π)/1764 weeks
431.0217 -.70177 (43*2π)/1764 weeks
44-.6575 1.05489 (44*2π)/1764 weeks
45-.85808 -.48406 (45*2π)/1764 weeks
46.38307 .29758 (46*2π)/1764 weeks
47-.37977 -1.05748 (47*2π)/1764 weeks
48-.63697 -.54219 (48*2π)/1764 weeks
491.00065 .75571 (49*2π)/1764 weeks
50-.44203 -1.19749 (50*2π)/1764 weeks
51-.31765 .15506 (51*2π)/1763 weeks
52-.16835 .24123 (52*2π)/1763 weeks
53.29797 -.54987 (53*2π)/1763 weeks
54-.02627 -.41219 (54*2π)/1763 weeks
55-.01337 .05133 (55*2π)/1763 weeks
56.05658 -.62385 (56*2π)/1763 weeks
57.12959 .52604 (57*2π)/1763 weeks
58.3689 -.13403 (58*2π)/1763 weeks
59-.52832 -.25072 (59*2π)/1763 weeks
60-.37724 -.10085 (60*2π)/1763 weeks
61-.12796 -.33399 (61*2π)/1763 weeks
62-.29302 .00803 (62*2π)/1763 weeks
63-.49132 .21878 (63*2π)/1763 weeks
64-.2508 -.02196 (64*2π)/1763 weeks
65.08615 -.09297 (65*2π)/1763 weeks
66-.2033 -.40481 (66*2π)/1763 weeks
67-.37412 .07156 (67*2π)/1763 weeks
68-.39643 .35247 (68*2π)/1763 weeks
69-.43536 -.48502 (69*2π)/1763 weeks
70.05054 .21543 (70*2π)/1763 weeks
71-.00505 -.34095 (71*2π)/1762 weeks
72.26837 .283 (72*2π)/1762 weeks
73-.74736 .30629 (73*2π)/1762 weeks
74-.01805 .391 (74*2π)/1762 weeks
75-.59457 -.02951 (75*2π)/1762 weeks
76.29462 .46589 (76*2π)/1762 weeks
77-.28294 -.21091 (77*2π)/1762 weeks
78-.08732 .29379 (78*2π)/1762 weeks
79-.29654 .55642 (79*2π)/1762 weeks
80-.12833 -.31209 (80*2π)/1762 weeks
81-.21587 .20562 (81*2π)/1762 weeks
82-.08557 -.3397 (82*2π)/1762 weeks
83.20254 -.148 (83*2π)/1762 weeks
84-.23594 .23921 (84*2π)/1762 weeks
85.1241 -.36111 (85*2π)/1762 weeks
86-.25816 -.15417 (86*2π)/1762 weeks
87.13427 .05773 (87*2π)/1762 weeks
88-.18807   (88*2π)/1762 weeks
89.13427 -.05773 (89*2π)/1762 weeks
90-.25816 .15417 (90*2π)/1762 weeks
91.1241 .36111 (91*2π)/1762 weeks
92-.23594 -.23921 (92*2π)/1762 weeks
93.20254 .148 (93*2π)/1762 weeks
94-.08557 .3397 (94*2π)/1762 weeks
95-.21587 -.20562 (95*2π)/1762 weeks
96-.12833 .31209 (96*2π)/1762 weeks
97-.29654 -.55642 (97*2π)/1762 weeks
98-.08732 -.29379 (98*2π)/1762 weeks
99-.28294 .21091 (99*2π)/1762 weeks
100.29462 -.46589 (100*2π)/1762 weeks
101-.59457 .02951 (101*2π)/1762 weeks
102-.01805 -.391 (102*2π)/1762 weeks
103-.74736 -.30629 (103*2π)/1762 weeks
104.26837 -.283 (104*2π)/1762 weeks
105-.00505 .34095 (105*2π)/1762 weeks
106.05054 -.21543 (106*2π)/1762 weeks
107-.43536 .48502 (107*2π)/1762 weeks
108-.39643 -.35247 (108*2π)/1762 weeks
109-.37412 -.07156 (109*2π)/1762 weeks
110-.2033 .40481 (110*2π)/1762 weeks
111.08615 .09297 (111*2π)/1762 weeks
112-.2508 .02196 (112*2π)/1762 weeks
113-.49132 -.21878 (113*2π)/1762 weeks
114-.29302 -.00803 (114*2π)/1762 weeks
115-.12796 .33399 (115*2π)/1762 weeks
116-.37724 .10085 (116*2π)/1762 weeks
117-.52832 .25072 (117*2π)/1762 weeks
118.3689 .13403 (118*2π)/1761 weeks
119.12959 -.52604 (119*2π)/1761 weeks
120.05658 .62385 (120*2π)/1761 weeks
121-.01337 -.05133 (121*2π)/1761 weeks
122-.02627 .41219 (122*2π)/1761 weeks
123.29797 .54987 (123*2π)/1761 weeks
124-.16835 -.24123 (124*2π)/1761 weeks
125-.31765 -.15506 (125*2π)/1761 weeks
126-.44203 1.19749 (126*2π)/1761 weeks
1271.00065 -.75571 (127*2π)/1761 weeks
128-.63697 .54219 (128*2π)/1761 weeks
129-.37977 1.05748 (129*2π)/1761 weeks
130.38307 -.29758 (130*2π)/1761 weeks
131-.85808 .48406 (131*2π)/1761 weeks
132-.6575 -1.05489 (132*2π)/1761 weeks
1331.0217 .70177 (133*2π)/1761 weeks
134-.78686 -.37597 (134*2π)/1761 weeks
135-.09031 .11947 (135*2π)/1761 weeks
136-.7202 .91487 (136*2π)/1761 weeks
137.18554 -.18073 (137*2π)/1761 weeks
138-.65176 -.40246 (138*2π)/1761 weeks
139.28841 .07536 (139*2π)/1761 weeks
140-.85343 .78479 (140*2π)/1761 weeks
141.15909 -.61094 (141*2π)/1761 weeks
142-.74014 .81169 (142*2π)/1761 weeks
143-.48184 .17556 (143*2π)/1761 weeks
144.0139 -.0561 (144*2π)/1761 weeks
145-.09957 .55919 (145*2π)/1761 weeks
146-.66845 -.84615 (146*2π)/1761 weeks
147-.65482 .6018 (147*2π)/1761 weeks
148-1.19064 -.43333 (148*2π)/1761 weeks
149.83428 .84729 (149*2π)/1761 weeks
150-.61381 .09405 (150*2π)/1761 weeks
151-.41265 .91303 (151*2π)/1761 weeks
152-1.78676 -.85693 (152*2π)/1761 weeks
153-1.76844 .54262 (153*2π)/1761 weeks
1541.63534 2.07504 (154*2π)/1761 weeks
155-1.05973 .23208 (155*2π)/1761 weeks
156-.20771 1.63509 (156*2π)/1761 weeks
157.78736 -.16778 (157*2π)/1761 weeks
158-.40223 1.10338 (158*2π)/1761 weeks
159.44523 -.04458 (159*2π)/1761 weeks
160-.15911 .42049 (160*2π)/1761 weeks
1611.25857 .61667 (161*2π)/1761 weeks
162.77484 1.46653 (162*2π)/1761 weeks
163-.8459 1.1007 (163*2π)/1761 weeks
164-.57537 .56144 (164*2π)/1761 weeks
165.85771 1.81961 (165*2π)/1761 weeks
166-.78962 .34873 (166*2π)/1761 weeks
167-.77977 1.81298 (167*2π)/1761 weeks
168-2.69771 1.20715 (168*2π)/1761 weeks
1694.26056 2.90548 (169*2π)/1761 weeks
170-2.23147 .09333 (170*2π)/1761 weeks
1716.61557 -1.42203 (171*2π)/1761 weeks
172-.61327 5.98998 (172*2π)/1761 weeks
173-3.64089 2.83999 (173*2π)/1761 weeks
17417.51536 2.88841 (174*2π)/1761 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.