Back to list of Stocks    See Also: Seasonal Analysis of AGDYGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AGDY (AGRI-DYNAMICS INC)


AGDY (AGRI-DYNAMICS INC) appears to have interesting cyclic behaviour every 29 weeks (.1434*cosine), 24 weeks (.1325*cosine), and 21 weeks (.1192*cosine).

AGDY (AGRI-DYNAMICS INC) has an average price of .11 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 9/8/2009 to 11/28/2016 for AGDY (AGRI-DYNAMICS INC), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0.1148   0 
1.1331 .00171 (1*2π)/287287 weeks
2.19853 .01659 (2*2π)/287144 weeks
3.14904 .01199 (3*2π)/28796 weeks
4.17536 .03291 (4*2π)/28772 weeks
5.14691 .02794 (5*2π)/28757 weeks
6.16109 .05192 (6*2π)/28748 weeks
7.14381 .04379 (7*2π)/28741 weeks
8.15207 .06195 (8*2π)/28736 weeks
9.13949 .06039 (9*2π)/28732 weeks
10.14336 .06368 (10*2π)/28729 weeks
11.1255 .0712 (11*2π)/28726 weeks
12.13255 .0687 (12*2π)/28724 weeks
13.1107 .07512 (13*2π)/28722 weeks
14.11923 .07581 (14*2π)/28721 weeks
15.09833 .07853 (15*2π)/28719 weeks
16.10694 .07965 (16*2π)/28718 weeks
17.08814 .08082 (17*2π)/28717 weeks
18.09648 .07982 (18*2π)/28716 weeks
19.07874 .07809 (19*2π)/28715 weeks
20.08473 .07811 (20*2π)/28714 weeks
21.07072 .07631 (21*2π)/28714 weeks
22.07204 .07443 (22*2π)/28713 weeks
23.06403 .07486 (23*2π)/28712 weeks
24.06517 .06971 (24*2π)/28712 weeks
25.05754 .07133 (25*2π)/28711 weeks
26.05967 .06626 (26*2π)/28711 weeks
27.05306 .06489 (27*2π)/28711 weeks
28.0539 .06168 (28*2π)/28710 weeks
29.04966 .06098 (29*2π)/28710 weeks
30.04921 .05745 (30*2π)/28710 weeks
31.04707 .06034 (31*2π)/2879 weeks
32.04736 .05281 (32*2π)/2879 weeks
33.04657 .05832 (33*2π)/2879 weeks
34.04705 .05098 (34*2π)/2878 weeks
35.04505 .05364 (35*2π)/2878 weeks
36.04658 .04875 (36*2π)/2878 weeks
37.04304 .05035 (37*2π)/2878 weeks
38.04494 .04774 (38*2π)/2878 weeks
39.04106 .04808 (39*2π)/2877 weeks
40.04226 .04847 (40*2π)/2877 weeks
41.04054 .04742 (41*2π)/2877 weeks
42.04076 .04823 (42*2π)/2877 weeks
43.04026 .04721 (43*2π)/2877 weeks
44.03797 .04737 (44*2π)/2877 weeks
45.0399 .0466 (45*2π)/2876 weeks
46.03584 .04546 (46*2π)/2876 weeks
47.03676 .04576 (47*2π)/2876 weeks
48.03506 .044 (48*2π)/2876 weeks
49.03333 .04357 (49*2π)/2876 weeks
50.03326 .04296 (50*2π)/2876 weeks
51.03149 .04084 (51*2π)/2876 weeks
52.03075 .04102 (52*2π)/2876 weeks
53.03004 .03774 (53*2π)/2875 weeks
54.02834 .0395 (54*2π)/2875 weeks
55.02823 .03465 (55*2π)/2875 weeks
56.02713 .03697 (56*2π)/2875 weeks
57.02701 .03129 (57*2π)/2875 weeks
58.02697 .03469 (58*2π)/2875 weeks
59.02655 .02853 (59*2π)/2875 weeks
60.0273 .03147 (60*2π)/2875 weeks
61.02727 .02606 (61*2π)/2875 weeks
62.02785 .02844 (62*2π)/2875 weeks
63.02861 .02428 (63*2π)/2875 weeks
64.02843 .02577 (64*2π)/2874 weeks
65.02955 .02277 (65*2π)/2874 weeks
66.03108 .02413 (66*2π)/2874 weeks
67.03031 .02108 (67*2π)/2874 weeks
68.03322 .0236 (68*2π)/2874 weeks
69.03176 .02041 (69*2π)/2874 weeks
70.03551 .02268 (70*2π)/2874 weeks
71.03276 .0209 (71*2π)/2874 weeks
72.03665 .02264 (72*2π)/2874 weeks
73.03457 .02151 (73*2π)/2874 weeks
74.03662 .02353 (74*2π)/2874 weeks
75.03587 .02268 (75*2π)/2874 weeks
76.03695 .02489 (76*2π)/2874 weeks
77.03585 .02411 (77*2π)/2874 weeks
78.037 .02621 (78*2π)/2874 weeks
79.03601 .026 (79*2π)/2874 weeks
80.03589 .02704 (80*2π)/2874 weeks
81.03515 .02752 (81*2π)/2874 weeks
82.03496 .0279 (82*2π)/2874 weeks
83.03252 .02904 (83*2π)/2873 weeks
84.03348 .02871 (84*2π)/2873 weeks
85.03005 .03086 (85*2π)/2873 weeks
86.03146 .02882 (86*2π)/2873 weeks
87.02812 .03197 (87*2π)/2873 weeks
88.02886 .02928 (88*2π)/2873 weeks
89.02691 .03084 (89*2π)/2873 weeks
90.02581 .02885 (90*2π)/2873 weeks
91.02496 .03003 (91*2π)/2873 weeks
92.02332 .02777 (92*2π)/2873 weeks
93.02178 .02878 (93*2π)/2873 weeks
94.02168 .02709 (94*2π)/2873 weeks
95.01983 .028 (95*2π)/2873 weeks
96.02026 .02523 (96*2π)/2873 weeks
97.01895 .02677 (97*2π)/2873 weeks
98.01921 .02339 (98*2π)/2873 weeks
99.01858 .024 (99*2π)/2873 weeks
100.01771 .02138 (100*2π)/2873 weeks
101.01774 .02195 (101*2π)/2873 weeks
102.01731 .01934 (102*2π)/2873 weeks
103.01681 .02037 (103*2π)/2873 weeks
104.01698 .01817 (104*2π)/2873 weeks
105.01697 .01911 (105*2π)/2873 weeks
106.01697 .01629 (106*2π)/2873 weeks
107.01716 .01829 (107*2π)/2873 weeks
108.01682 .01536 (108*2π)/2873 weeks
109.01758 .01647 (109*2π)/2873 weeks
110.01655 .01484 (110*2π)/2873 weeks
111.01784 .01524 (111*2π)/2873 weeks
112.01735 .01469 (112*2π)/2873 weeks
113.01747 .0137 (113*2π)/2873 weeks
114.01731 .01465 (114*2π)/2873 weeks
115.01803 .01273 (115*2π)/2872 weeks
116.01603 .01382 (116*2π)/2872 weeks
117.01824 .01317 (117*2π)/2872 weeks
118.01561 .01245 (118*2π)/2872 weeks
119.01794 .01358 (119*2π)/2872 weeks
120.01557 .01197 (120*2π)/2872 weeks
121.01782 .01259 (121*2π)/2872 weeks
122.01543 .01139 (122*2π)/2872 weeks
123.01759 .01151 (123*2π)/2872 weeks
124.01452 .01049 (124*2π)/2872 weeks
125.01671 .01051 (125*2π)/2872 weeks
126.01377 .0098 (126*2π)/2872 weeks
127.0162 .00988 (127*2π)/2872 weeks
128.01417 .00921 (128*2π)/2872 weeks
129.01497 .00893 (129*2π)/2872 weeks
130.01477 .00781 (130*2π)/2872 weeks
131.01453 .00724 (131*2π)/2872 weeks
132.01385 .00639 (132*2π)/2872 weeks
133.01412 .00596 (133*2π)/2872 weeks
134.01276 .005 (134*2π)/2872 weeks
135.01348 .00515 (135*2π)/2872 weeks
136.01295 .00492 (136*2π)/2872 weeks
137.01332 .00374 (137*2π)/2872 weeks
138.01348 .00417 (138*2π)/2872 weeks
139.01333 .00213 (139*2π)/2872 weeks
140.01392 .00227 (140*2π)/2872 weeks
141.01252 .00079 (141*2π)/2872 weeks
142.01322 .00079 (142*2π)/2872 weeks
143.01253 -.00039 (143*2π)/2872 weeks
144.01253 .00039 (144*2π)/2872 weeks
145.01322 -.00079 (145*2π)/2872 weeks
146.01252 -.00079 (146*2π)/2872 weeks
147.01392 -.00227 (147*2π)/2872 weeks
148.01333 -.00213 (148*2π)/2872 weeks
149.01348 -.00417 (149*2π)/2872 weeks
150.01332 -.00374 (150*2π)/2872 weeks
151.01295 -.00492 (151*2π)/2872 weeks
152.01348 -.00515 (152*2π)/2872 weeks
153.01276 -.005 (153*2π)/2872 weeks
154.01412 -.00596 (154*2π)/2872 weeks
155.01385 -.00639 (155*2π)/2872 weeks
156.01453 -.00724 (156*2π)/2872 weeks
157.01477 -.00781 (157*2π)/2872 weeks
158.01497 -.00893 (158*2π)/2872 weeks
159.01417 -.00921 (159*2π)/2872 weeks
160.0162 -.00988 (160*2π)/2872 weeks
161.01377 -.0098 (161*2π)/2872 weeks
162.01671 -.01051 (162*2π)/2872 weeks
163.01452 -.01049 (163*2π)/2872 weeks
164.01759 -.01151 (164*2π)/2872 weeks
165.01543 -.01139 (165*2π)/2872 weeks
166.01782 -.01259 (166*2π)/2872 weeks
167.01557 -.01197 (167*2π)/2872 weeks
168.01794 -.01358 (168*2π)/2872 weeks
169.01561 -.01245 (169*2π)/2872 weeks
170.01824 -.01317 (170*2π)/2872 weeks
171.01603 -.01382 (171*2π)/2872 weeks
172.01803 -.01273 (172*2π)/2872 weeks
173.01731 -.01465 (173*2π)/2872 weeks
174.01747 -.0137 (174*2π)/2872 weeks
175.01735 -.01469 (175*2π)/2872 weeks
176.01784 -.01524 (176*2π)/2872 weeks
177.01655 -.01484 (177*2π)/2872 weeks
178.01758 -.01647 (178*2π)/2872 weeks
179.01682 -.01536 (179*2π)/2872 weeks
180.01716 -.01829 (180*2π)/2872 weeks
181.01697 -.01629 (181*2π)/2872 weeks
182.01697 -.01911 (182*2π)/2872 weeks
183.01698 -.01817 (183*2π)/2872 weeks
184.01681 -.02037 (184*2π)/2872 weeks
185.01731 -.01934 (185*2π)/2872 weeks
186.01774 -.02195 (186*2π)/2872 weeks
187.01771 -.02138 (187*2π)/2872 weeks
188.01858 -.024 (188*2π)/2872 weeks
189.01921 -.02339 (189*2π)/2872 weeks
190.01895 -.02677 (190*2π)/2872 weeks
191.02026 -.02523 (191*2π)/2872 weeks
192.01983 -.028 (192*2π)/2871 weeks
193.02168 -.02709 (193*2π)/2871 weeks
194.02178 -.02878 (194*2π)/2871 weeks
195.02332 -.02777 (195*2π)/2871 weeks
196.02496 -.03003 (196*2π)/2871 weeks
197.02581 -.02885 (197*2π)/2871 weeks
198.02691 -.03084 (198*2π)/2871 weeks
199.02886 -.02928 (199*2π)/2871 weeks
200.02812 -.03197 (200*2π)/2871 weeks
201.03146 -.02882 (201*2π)/2871 weeks
202.03005 -.03086 (202*2π)/2871 weeks
203.03348 -.02871 (203*2π)/2871 weeks
204.03252 -.02904 (204*2π)/2871 weeks
205.03496 -.0279 (205*2π)/2871 weeks
206.03515 -.02752 (206*2π)/2871 weeks
207.03589 -.02704 (207*2π)/2871 weeks
208.03601 -.026 (208*2π)/2871 weeks
209.037 -.02621 (209*2π)/2871 weeks
210.03585 -.02411 (210*2π)/2871 weeks
211.03695 -.02489 (211*2π)/2871 weeks
212.03587 -.02268 (212*2π)/2871 weeks
213.03662 -.02353 (213*2π)/2871 weeks
214.03457 -.02151 (214*2π)/2871 weeks
215.03665 -.02264 (215*2π)/2871 weeks
216.03276 -.0209 (216*2π)/2871 weeks
217.03551 -.02268 (217*2π)/2871 weeks
218.03176 -.02041 (218*2π)/2871 weeks
219.03322 -.0236 (219*2π)/2871 weeks
220.03031 -.02108 (220*2π)/2871 weeks
221.03108 -.02413 (221*2π)/2871 weeks
222.02955 -.02277 (222*2π)/2871 weeks
223.02843 -.02577 (223*2π)/2871 weeks
224.02861 -.02428 (224*2π)/2871 weeks
225.02785 -.02844 (225*2π)/2871 weeks
226.02727 -.02606 (226*2π)/2871 weeks
227.0273 -.03147 (227*2π)/2871 weeks
228.02655 -.02853 (228*2π)/2871 weeks
229.02697 -.03469 (229*2π)/2871 weeks
230.02701 -.03129 (230*2π)/2871 weeks
231.02713 -.03697 (231*2π)/2871 weeks
232.02823 -.03465 (232*2π)/2871 weeks
233.02834 -.0395 (233*2π)/2871 weeks
234.03004 -.03774 (234*2π)/2871 weeks
235.03075 -.04102 (235*2π)/2871 weeks
236.03149 -.04084 (236*2π)/2871 weeks
237.03326 -.04296 (237*2π)/2871 weeks
238.03333 -.04357 (238*2π)/2871 weeks
239.03506 -.044 (239*2π)/2871 weeks
240.03676 -.04576 (240*2π)/2871 weeks
241.03584 -.04546 (241*2π)/2871 weeks
242.0399 -.0466 (242*2π)/2871 weeks
243.03797 -.04737 (243*2π)/2871 weeks
244.04026 -.04721 (244*2π)/2871 weeks
245.04076 -.04823 (245*2π)/2871 weeks
246.04054 -.04742 (246*2π)/2871 weeks
247.04226 -.04847 (247*2π)/2871 weeks
248.04106 -.04808 (248*2π)/2871 weeks
249.04494 -.04774 (249*2π)/2871 weeks
250.04304 -.05035 (250*2π)/2871 weeks
251.04658 -.04875 (251*2π)/2871 weeks
252.04505 -.05364 (252*2π)/2871 weeks
253.04705 -.05098 (253*2π)/2871 weeks
254.04657 -.05832 (254*2π)/2871 weeks
255.04736 -.05281 (255*2π)/2871 weeks
256.04707 -.06034 (256*2π)/2871 weeks
257.04921 -.05745 (257*2π)/2871 weeks
258.04966 -.06098 (258*2π)/2871 weeks
259.0539 -.06168 (259*2π)/2871 weeks
260.05306 -.06489 (260*2π)/2871 weeks
261.05967 -.06626 (261*2π)/2871 weeks
262.05754 -.07133 (262*2π)/2871 weeks
263.06517 -.06971 (263*2π)/2871 weeks
264.06403 -.07486 (264*2π)/2871 weeks
265.07204 -.07443 (265*2π)/2871 weeks
266.07072 -.07631 (266*2π)/2871 weeks
267.08473 -.07811 (267*2π)/2871 weeks
268.07874 -.07809 (268*2π)/2871 weeks
269.09648 -.07982 (269*2π)/2871 weeks
270.08814 -.08082 (270*2π)/2871 weeks
271.10694 -.07965 (271*2π)/2871 weeks
272.09833 -.07853 (272*2π)/2871 weeks
273.11923 -.07581 (273*2π)/2871 weeks
274.1107 -.07512 (274*2π)/2871 weeks
275.13255 -.0687 (275*2π)/2871 weeks
276.1255 -.0712 (276*2π)/2871 weeks
277.14336 -.06368 (277*2π)/2871 weeks
278.13949 -.06039 (278*2π)/2871 weeks
279.15207 -.06195 (279*2π)/2871 weeks
280.14381 -.04379 (280*2π)/2871 weeks
281.16109 -.05192 (281*2π)/2871 weeks
282.14691 -.02794 (282*2π)/2871 weeks
283.17536 -.03291 (283*2π)/2871 weeks
284.14904 -.01199 (284*2π)/2871 weeks
285.19853 -.01659 (285*2π)/2871 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.