Back to list of Stocks    See Also: Seasonal Analysis of AGDYGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AGDY (AGRI-DYNAMICS IN)


AGDY (AGRI-DYNAMICS IN) appears to have interesting cyclic behaviour every 41 weeks (5.7921*cosine), 37 weeks (5.6021*cosine), and 34 weeks (5.4229*cosine).

AGDY (AGRI-DYNAMICS IN) has an average price of 3.39 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 9/8/2009 to 6/19/2017 for AGDY (AGRI-DYNAMICS IN), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
03.38837   0 
16.69834 .25147 (1*2π)/408408 weeks
26.70463 .55677 (2*2π)/408204 weeks
36.63901 .78319 (3*2π)/408136 weeks
46.55761 1.07604 (4*2π)/408102 weeks
56.48822 1.31566 (5*2π)/40882 weeks
66.36238 1.56318 (6*2π)/40868 weeks
76.25688 1.80383 (7*2π)/40858 weeks
86.10869 2.01017 (8*2π)/40851 weeks
95.95272 2.23238 (9*2π)/40845 weeks
105.79212 2.41568 (10*2π)/40841 weeks
115.60208 2.6025 (11*2π)/40837 weeks
125.42289 2.7649 (12*2π)/40834 weeks
135.22018 2.91068 (13*2π)/40831 weeks
145.02278 3.03962 (14*2π)/40829 weeks
154.80428 3.14918 (15*2π)/40827 weeks
164.59816 3.24858 (16*2π)/40826 weeks
174.37729 3.31789 (17*2π)/40824 weeks
184.15934 3.38959 (18*2π)/40823 weeks
193.95114 3.42572 (19*2π)/40821 weeks
203.72925 3.45645 (20*2π)/40820 weeks
213.53051 3.46864 (21*2π)/40819 weeks
223.31795 3.45798 (22*2π)/40819 weeks
233.12403 3.44708 (23*2π)/40818 weeks
242.93315 3.40565 (24*2π)/40817 weeks
252.74643 3.36886 (25*2π)/40816 weeks
262.58102 3.3068 (26*2π)/40816 weeks
272.40922 3.23922 (27*2π)/40815 weeks
282.26319 3.16521 (28*2π)/40815 weeks
292.11612 3.07434 (29*2π)/40814 weeks
301.98755 2.98723 (30*2π)/40814 weeks
311.87022 2.88556 (31*2π)/40813 weeks
321.76375 2.78593 (32*2π)/40813 weeks
331.67329 2.67721 (33*2π)/40812 weeks
341.5896 2.57126 (34*2π)/40812 weeks
351.52564 2.46134 (35*2π)/40812 weeks
361.46525 2.35202 (36*2π)/40811 weeks
371.42254 2.24778 (37*2π)/40811 weeks
381.38911 2.14066 (38*2π)/40811 weeks
391.36367 2.04168 (39*2π)/40810 weeks
401.35118 1.94379 (40*2π)/40810 weeks
411.34329 1.85363 (41*2π)/40810 weeks
421.34644 1.76897 (42*2π)/40810 weeks
431.35311 1.69235 (43*2π)/4089 weeks
441.37107 1.62289 (44*2π)/4089 weeks
451.38792 1.55713 (45*2π)/4089 weeks
461.41351 1.5052 (46*2π)/4089 weeks
471.43922 1.45198 (47*2π)/4089 weeks
481.4647 1.41499 (48*2π)/4089 weeks
491.49545 1.37972 (49*2π)/4088 weeks
501.52084 1.35376 (50*2π)/4088 weeks
511.55063 1.33605 (51*2π)/4088 weeks
521.57638 1.31992 (52*2π)/4088 weeks
531.59867 1.31386 (53*2π)/4088 weeks
541.62141 1.3095 (54*2π)/4088 weeks
551.6363 1.31096 (55*2π)/4087 weeks
561.6507 1.31763 (56*2π)/4087 weeks
571.66079 1.32579 (57*2π)/4087 weeks
581.66626 1.33735 (58*2π)/4087 weeks
591.67012 1.34993 (59*2π)/4087 weeks
601.66735 1.36284 (60*2π)/4087 weeks
611.66133 1.37684 (61*2π)/4087 weeks
621.65213 1.39085 (62*2π)/4087 weeks
631.6373 1.40239 (63*2π)/4086 weeks
641.61996 1.41712 (64*2π)/4086 weeks
651.60059 1.42635 (65*2π)/4086 weeks
661.57648 1.43611 (66*2π)/4086 weeks
671.55225 1.44363 (67*2π)/4086 weeks
681.52493 1.44777 (68*2π)/4086 weeks
691.49581 1.45056 (69*2π)/4086 weeks
701.46632 1.44999 (70*2π)/4086 weeks
711.43625 1.44599 (71*2π)/4086 weeks
721.40436 1.4398 (72*2π)/4086 weeks
731.37477 1.43122 (73*2π)/4086 weeks
741.34406 1.4184 (74*2π)/4086 weeks
751.31387 1.40486 (75*2π)/4085 weeks
761.28741 1.3877 (76*2π)/4085 weeks
771.25843 1.36779 (77*2π)/4085 weeks
781.23603 1.34743 (78*2π)/4085 weeks
791.21139 1.32244 (79*2π)/4085 weeks
801.1919 1.30052 (80*2π)/4085 weeks
811.17432 1.27194 (81*2π)/4085 weeks
821.15723 1.24817 (82*2π)/4085 weeks
831.14766 1.22019 (83*2π)/4085 weeks
841.13493 1.19392 (84*2π)/4085 weeks
851.13121 1.16842 (85*2π)/4085 weeks
861.12451 1.1408 (86*2π)/4085 weeks
871.12377 1.11873 (87*2π)/4085 weeks
881.12464 1.09324 (88*2π)/4085 weeks
891.12562 1.07316 (89*2π)/4085 weeks
901.13168 1.05396 (90*2π)/4085 weeks
911.1357 1.0361 (91*2π)/4084 weeks
921.14392 1.02273 (92*2π)/4084 weeks
931.15029 1.00966 (93*2π)/4084 weeks
941.15944 1.00168 (94*2π)/4084 weeks
951.16734 .99315 (95*2π)/4084 weeks
961.17464 .99085 (96*2π)/4084 weeks
971.18388 .98738 (97*2π)/4084 weeks
981.18782 .98863 (98*2π)/4084 weeks
991.19589 .99064 (99*2π)/4084 weeks
1001.19643 .99464 (100*2π)/4084 weeks
1011.2006 1.00212 (101*2π)/4084 weeks
1021.19857 1.00803 (102*2π)/4084 weeks
1031.19586 1.01863 (103*2π)/4084 weeks
1041.19199 1.02662 (104*2π)/4084 weeks
1051.18341 1.03709 (105*2π)/4084 weeks
1061.17544 1.04737 (106*2π)/4084 weeks
1071.16229 1.05666 (107*2π)/4084 weeks
1081.14839 1.06686 (108*2π)/4084 weeks
1091.13199 1.07408 (109*2π)/4084 weeks
1101.11268 1.08242 (110*2π)/4084 weeks
1111.09319 1.08809 (111*2π)/4084 weeks
1121.06958 1.09255 (112*2π)/4084 weeks
1131.04622 1.0946 (113*2π)/4084 weeks
1141.02055 1.09482 (114*2π)/4084 weeks
115.9943 1.09299 (115*2π)/4084 weeks
116.96693 1.08892 (116*2π)/4084 weeks
117.9394 1.08269 (117*2π)/4083 weeks
118.91185 1.07265 (118*2π)/4083 weeks
119.88383 1.06224 (119*2π)/4083 weeks
120.85825 1.04588 (120*2π)/4083 weeks
121.8299 1.03009 (121*2π)/4083 weeks
122.80702 1.00992 (122*2π)/4083 weeks
123.78091 .98819 (123*2π)/4083 weeks
124.76106 .96554 (124*2π)/4083 weeks
125.74023 .93865 (125*2π)/4083 weeks
126.72322 .91319 (126*2π)/4083 weeks
127.70871 .88314 (127*2π)/4083 weeks
128.69601 .85485 (128*2π)/4083 weeks
129.68691 .82363 (129*2π)/4083 weeks
130.67979 .79452 (130*2π)/4083 weeks
131.67735 .76394 (131*2π)/4083 weeks
132.67637 .73354 (132*2π)/4083 weeks
133.67866 .70571 (133*2π)/4083 weeks
134.68467 .67666 (134*2π)/4083 weeks
135.6906 .65144 (135*2π)/4083 weeks
136.70106 .62701 (136*2π)/4083 weeks
137.71108 .6056 (137*2π)/4083 weeks
138.72592 .58723 (138*2π)/4083 weeks
139.73985 .56934 (139*2π)/4083 weeks
140.75578 .55721 (140*2π)/4083 weeks
141.7725 .54492 (141*2π)/4083 weeks
142.78865 .53834 (142*2π)/4083 weeks
143.80493 .53262 (143*2π)/4083 weeks
144.81968 .53164 (144*2π)/4083 weeks
145.83539 .53298 (145*2π)/4083 weeks
146.84819 .53529 (146*2π)/4083 weeks
147.85968 .5426 (147*2π)/4083 weeks
148.86979 .54947 (148*2π)/4083 weeks
149.87646 .56037 (149*2π)/4083 weeks
150.88206 .57101 (150*2π)/4083 weeks
151.88296 .58413 (151*2π)/4083 weeks
152.8841 .5988 (152*2π)/4083 weeks
153.87972 .61158 (153*2π)/4083 weeks
154.87391 .62761 (154*2π)/4083 weeks
155.86484 .64062 (155*2π)/4083 weeks
156.85316 .65565 (156*2π)/4083 weeks
157.83874 .66702 (157*2π)/4083 weeks
158.82134 .67946 (158*2π)/4083 weeks
159.80175 .68933 (159*2π)/4083 weeks
160.77984 .69761 (160*2π)/4083 weeks
161.75545 .70357 (161*2π)/4083 weeks
162.72879 .70836 (162*2π)/4083 weeks
163.7024 .70982 (163*2π)/4083 weeks
164.67209 .70764 (164*2π)/4082 weeks
165.64293 .70524 (165*2π)/4082 weeks
166.61306 .69713 (166*2π)/4082 weeks
167.58093 .68737 (167*2π)/4082 weeks
168.55199 .67569 (168*2π)/4082 weeks
169.52125 .658 (169*2π)/4082 weeks
170.49233 .64088 (170*2π)/4082 weeks
171.46493 .61672 (171*2π)/4082 weeks
172.43744 .59268 (172*2π)/4082 weeks
173.41387 .56459 (173*2π)/4082 weeks
174.38952 .53405 (174*2π)/4082 weeks
175.37078 .50322 (175*2π)/4082 weeks
176.35225 .46761 (176*2π)/4082 weeks
177.33858 .43404 (177*2π)/4082 weeks
178.32745 .39573 (178*2π)/4082 weeks
179.31828 .35988 (179*2π)/4082 weeks
180.315 .32201 (180*2π)/4082 weeks
181.3119 .28416 (181*2π)/4082 weeks
182.31504 .24823 (182*2π)/4082 weeks
183.31987 .21152 (183*2π)/4082 weeks
184.32819 .17672 (184*2π)/4082 weeks
185.33887 .14334 (185*2π)/4082 weeks
186.35207 .11205 (186*2π)/4082 weeks
187.3676 .08375 (187*2π)/4082 weeks
188.3849 .05718 (188*2π)/4082 weeks
189.40467 .03451 (189*2π)/4082 weeks
190.42519 .01319 (190*2π)/4082 weeks
191.4467 -.00384 (191*2π)/4082 weeks
192.46856 -.01906 (192*2π)/4082 weeks
193.48989 -.03024 (193*2π)/4082 weeks
194.51139 -.03851 (194*2π)/4082 weeks
195.5321 -.04371 (195*2π)/4082 weeks
196.55259 -.04676 (196*2π)/4082 weeks
197.56979 -.04662 (197*2π)/4082 weeks
198.58738 -.04501 (198*2π)/4082 weeks
199.60031 -.04105 (199*2π)/4082 weeks
200.61299 -.03521 (200*2π)/4082 weeks
201.62166 -.02739 (201*2π)/4082 weeks
202.62932 -.01841 (202*2π)/4082 weeks
203.63402 -.00967 (203*2π)/4082 weeks
204.6344   (204*2π)/4082 weeks
205.63402 .00967 (205*2π)/4082 weeks
206.62932 .01841 (206*2π)/4082 weeks
207.62166 .02739 (207*2π)/4082 weeks
208.61299 .03521 (208*2π)/4082 weeks
209.60031 .04105 (209*2π)/4082 weeks
210.58738 .04501 (210*2π)/4082 weeks
211.56979 .04662 (211*2π)/4082 weeks
212.55259 .04676 (212*2π)/4082 weeks
213.5321 .04371 (213*2π)/4082 weeks
214.51139 .03851 (214*2π)/4082 weeks
215.48989 .03024 (215*2π)/4082 weeks
216.46856 .01906 (216*2π)/4082 weeks
217.4467 .00384 (217*2π)/4082 weeks
218.42519 -.01319 (218*2π)/4082 weeks
219.40467 -.03451 (219*2π)/4082 weeks
220.3849 -.05718 (220*2π)/4082 weeks
221.3676 -.08375 (221*2π)/4082 weeks
222.35207 -.11205 (222*2π)/4082 weeks
223.33887 -.14334 (223*2π)/4082 weeks
224.32819 -.17672 (224*2π)/4082 weeks
225.31987 -.21152 (225*2π)/4082 weeks
226.31504 -.24823 (226*2π)/4082 weeks
227.3119 -.28416 (227*2π)/4082 weeks
228.315 -.32201 (228*2π)/4082 weeks
229.31828 -.35988 (229*2π)/4082 weeks
230.32745 -.39573 (230*2π)/4082 weeks
231.33858 -.43404 (231*2π)/4082 weeks
232.35225 -.46761 (232*2π)/4082 weeks
233.37078 -.50322 (233*2π)/4082 weeks
234.38952 -.53405 (234*2π)/4082 weeks
235.41387 -.56459 (235*2π)/4082 weeks
236.43744 -.59268 (236*2π)/4082 weeks
237.46493 -.61672 (237*2π)/4082 weeks
238.49233 -.64088 (238*2π)/4082 weeks
239.52125 -.658 (239*2π)/4082 weeks
240.55199 -.67569 (240*2π)/4082 weeks
241.58093 -.68737 (241*2π)/4082 weeks
242.61306 -.69713 (242*2π)/4082 weeks
243.64293 -.70524 (243*2π)/4082 weeks
244.67209 -.70764 (244*2π)/4082 weeks
245.7024 -.70982 (245*2π)/4082 weeks
246.72879 -.70836 (246*2π)/4082 weeks
247.75545 -.70357 (247*2π)/4082 weeks
248.77984 -.69761 (248*2π)/4082 weeks
249.80175 -.68933 (249*2π)/4082 weeks
250.82134 -.67946 (250*2π)/4082 weeks
251.83874 -.66702 (251*2π)/4082 weeks
252.85316 -.65565 (252*2π)/4082 weeks
253.86484 -.64062 (253*2π)/4082 weeks
254.87391 -.62761 (254*2π)/4082 weeks
255.87972 -.61158 (255*2π)/4082 weeks
256.8841 -.5988 (256*2π)/4082 weeks
257.88296 -.58413 (257*2π)/4082 weeks
258.88206 -.57101 (258*2π)/4082 weeks
259.87646 -.56037 (259*2π)/4082 weeks
260.86979 -.54947 (260*2π)/4082 weeks
261.85968 -.5426 (261*2π)/4082 weeks
262.84819 -.53529 (262*2π)/4082 weeks
263.83539 -.53298 (263*2π)/4082 weeks
264.81968 -.53164 (264*2π)/4082 weeks
265.80493 -.53262 (265*2π)/4082 weeks
266.78865 -.53834 (266*2π)/4082 weeks
267.7725 -.54492 (267*2π)/4082 weeks
268.75578 -.55721 (268*2π)/4082 weeks
269.73985 -.56934 (269*2π)/4082 weeks
270.72592 -.58723 (270*2π)/4082 weeks
271.71108 -.6056 (271*2π)/4082 weeks
272.70106 -.62701 (272*2π)/4082 weeks
273.6906 -.65144 (273*2π)/4081 weeks
274.68467 -.67666 (274*2π)/4081 weeks
275.67866 -.70571 (275*2π)/4081 weeks
276.67637 -.73354 (276*2π)/4081 weeks
277.67735 -.76394 (277*2π)/4081 weeks
278.67979 -.79452 (278*2π)/4081 weeks
279.68691 -.82363 (279*2π)/4081 weeks
280.69601 -.85485 (280*2π)/4081 weeks
281.70871 -.88314 (281*2π)/4081 weeks
282.72322 -.91319 (282*2π)/4081 weeks
283.74023 -.93865 (283*2π)/4081 weeks
284.76106 -.96554 (284*2π)/4081 weeks
285.78091 -.98819 (285*2π)/4081 weeks
286.80702 -1.00992 (286*2π)/4081 weeks
287.8299 -1.03009 (287*2π)/4081 weeks
288.85825 -1.04588 (288*2π)/4081 weeks
289.88383 -1.06224 (289*2π)/4081 weeks
290.91185 -1.07265 (290*2π)/4081 weeks
291.9394 -1.08269 (291*2π)/4081 weeks
292.96693 -1.08892 (292*2π)/4081 weeks
293.9943 -1.09299 (293*2π)/4081 weeks
2941.02055 -1.09482 (294*2π)/4081 weeks
2951.04622 -1.0946 (295*2π)/4081 weeks
2961.06958 -1.09255 (296*2π)/4081 weeks
2971.09319 -1.08809 (297*2π)/4081 weeks
2981.11268 -1.08242 (298*2π)/4081 weeks
2991.13199 -1.07408 (299*2π)/4081 weeks
3001.14839 -1.06686 (300*2π)/4081 weeks
3011.16229 -1.05666 (301*2π)/4081 weeks
3021.17544 -1.04737 (302*2π)/4081 weeks
3031.18341 -1.03709 (303*2π)/4081 weeks
3041.19199 -1.02662 (304*2π)/4081 weeks
3051.19586 -1.01863 (305*2π)/4081 weeks
3061.19857 -1.00803 (306*2π)/4081 weeks
3071.2006 -1.00212 (307*2π)/4081 weeks
3081.19643 -.99464 (308*2π)/4081 weeks
3091.19589 -.99064 (309*2π)/4081 weeks
3101.18782 -.98863 (310*2π)/4081 weeks
3111.18388 -.98738 (311*2π)/4081 weeks
3121.17464 -.99085 (312*2π)/4081 weeks
3131.16734 -.99315 (313*2π)/4081 weeks
3141.15944 -1.00168 (314*2π)/4081 weeks
3151.15029 -1.00966 (315*2π)/4081 weeks
3161.14392 -1.02273 (316*2π)/4081 weeks
3171.1357 -1.0361 (317*2π)/4081 weeks
3181.13168 -1.05396 (318*2π)/4081 weeks
3191.12562 -1.07316 (319*2π)/4081 weeks
3201.12464 -1.09324 (320*2π)/4081 weeks
3211.12377 -1.11873 (321*2π)/4081 weeks
3221.12451 -1.1408 (322*2π)/4081 weeks
3231.13121 -1.16842 (323*2π)/4081 weeks
3241.13493 -1.19392 (324*2π)/4081 weeks
3251.14766 -1.22019 (325*2π)/4081 weeks
3261.15723 -1.24817 (326*2π)/4081 weeks
3271.17432 -1.27194 (327*2π)/4081 weeks
3281.1919 -1.30052 (328*2π)/4081 weeks
3291.21139 -1.32244 (329*2π)/4081 weeks
3301.23603 -1.34743 (330*2π)/4081 weeks
3311.25843 -1.36779 (331*2π)/4081 weeks
3321.28741 -1.3877 (332*2π)/4081 weeks
3331.31387 -1.40486 (333*2π)/4081 weeks
3341.34406 -1.4184 (334*2π)/4081 weeks
3351.37477 -1.43122 (335*2π)/4081 weeks
3361.40436 -1.4398 (336*2π)/4081 weeks
3371.43625 -1.44599 (337*2π)/4081 weeks
3381.46632 -1.44999 (338*2π)/4081 weeks
3391.49581 -1.45056 (339*2π)/4081 weeks
3401.52493 -1.44777 (340*2π)/4081 weeks
3411.55225 -1.44363 (341*2π)/4081 weeks
3421.57648 -1.43611 (342*2π)/4081 weeks
3431.60059 -1.42635 (343*2π)/4081 weeks
3441.61996 -1.41712 (344*2π)/4081 weeks
3451.6373 -1.40239 (345*2π)/4081 weeks
3461.65213 -1.39085 (346*2π)/4081 weeks
3471.66133 -1.37684 (347*2π)/4081 weeks
3481.66735 -1.36284 (348*2π)/4081 weeks
3491.67012 -1.34993 (349*2π)/4081 weeks
3501.66626 -1.33735 (350*2π)/4081 weeks
3511.66079 -1.32579 (351*2π)/4081 weeks
3521.6507 -1.31763 (352*2π)/4081 weeks
3531.6363 -1.31096 (353*2π)/4081 weeks
3541.62141 -1.3095 (354*2π)/4081 weeks
3551.59867 -1.31386 (355*2π)/4081 weeks
3561.57638 -1.31992 (356*2π)/4081 weeks
3571.55063 -1.33605 (357*2π)/4081 weeks
3581.52084 -1.35376 (358*2π)/4081 weeks
3591.49545 -1.37972 (359*2π)/4081 weeks
3601.4647 -1.41499 (360*2π)/4081 weeks
3611.43922 -1.45198 (361*2π)/4081 weeks
3621.41351 -1.5052 (362*2π)/4081 weeks
3631.38792 -1.55713 (363*2π)/4081 weeks
3641.37107 -1.62289 (364*2π)/4081 weeks
3651.35311 -1.69235 (365*2π)/4081 weeks
3661.34644 -1.76897 (366*2π)/4081 weeks
3671.34329 -1.85363 (367*2π)/4081 weeks
3681.35118 -1.94379 (368*2π)/4081 weeks
3691.36367 -2.04168 (369*2π)/4081 weeks
3701.38911 -2.14066 (370*2π)/4081 weeks
3711.42254 -2.24778 (371*2π)/4081 weeks
3721.46525 -2.35202 (372*2π)/4081 weeks
3731.52564 -2.46134 (373*2π)/4081 weeks
3741.5896 -2.57126 (374*2π)/4081 weeks
3751.67329 -2.67721 (375*2π)/4081 weeks
3761.76375 -2.78593 (376*2π)/4081 weeks
3771.87022 -2.88556 (377*2π)/4081 weeks
3781.98755 -2.98723 (378*2π)/4081 weeks
3792.11612 -3.07434 (379*2π)/4081 weeks
3802.26319 -3.16521 (380*2π)/4081 weeks
3812.40922 -3.23922 (381*2π)/4081 weeks
3822.58102 -3.3068 (382*2π)/4081 weeks
3832.74643 -3.36886 (383*2π)/4081 weeks
3842.93315 -3.40565 (384*2π)/4081 weeks
3853.12403 -3.44708 (385*2π)/4081 weeks
3863.31795 -3.45798 (386*2π)/4081 weeks
3873.53051 -3.46864 (387*2π)/4081 weeks
3883.72925 -3.45645 (388*2π)/4081 weeks
3893.95114 -3.42572 (389*2π)/4081 weeks
3904.15934 -3.38959 (390*2π)/4081 weeks
3914.37729 -3.31789 (391*2π)/4081 weeks
3924.59816 -3.24858 (392*2π)/4081 weeks
3934.80428 -3.14918 (393*2π)/4081 weeks
3945.02278 -3.03962 (394*2π)/4081 weeks
3955.22018 -2.91068 (395*2π)/4081 weeks
3965.42289 -2.7649 (396*2π)/4081 weeks
3975.60208 -2.6025 (397*2π)/4081 weeks
3985.79212 -2.41568 (398*2π)/4081 weeks
3995.95272 -2.23238 (399*2π)/4081 weeks
4006.10869 -2.01017 (400*2π)/4081 weeks
4016.25688 -1.80383 (401*2π)/4081 weeks
4026.36238 -1.56318 (402*2π)/4081 weeks
4036.48822 -1.31566 (403*2π)/4081 weeks
4046.55761 -1.07604 (404*2π)/4081 weeks
4056.63901 -.78319 (405*2π)/4081 weeks
4066.70463 -.55677 (406*2π)/4081 weeks



Back to list of Stocks