Back to list of Stocks    See Also: Seasonal Analysis of AFLGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AFL (AFLAC Incorporated Common Stock)


AFL (AFLAC Incorporated Common Stock) appears to have interesting cyclic behaviour every 147 weeks (2.8835*sine), 137 weeks (2.8093*sine), and 160 weeks (1.9424*cosine).

AFL (AFLAC Incorporated Common Stock) has an average price of 19.86 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 11/28/2016 for AFL (AFLAC Incorporated Common Stock), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
019.85695   0 
17.82047 -22.09314 (1*2π)/19151,915 weeks
21.3035 -7.66061 (2*2π)/1915958 weeks
32.14761 -6.66428 (3*2π)/1915638 weeks
41.93029 -5.78932 (4*2π)/1915479 weeks
5-.14943 -5.88201 (5*2π)/1915383 weeks
6-.46611 -3.11516 (6*2π)/1915319 weeks
7.11234 -2.82457 (7*2π)/1915274 weeks
8.1839 -2.58317 (8*2π)/1915239 weeks
9-.17599 -2.63886 (9*2π)/1915213 weeks
10-.76738 -1.47804 (10*2π)/1915192 weeks
11.57739 -.3933 (11*2π)/1915174 weeks
121.94236 -1.50869 (12*2π)/1915160 weeks
131.09157 -2.88354 (13*2π)/1915147 weeks
14-.38952 -2.80933 (14*2π)/1915137 weeks
15-1.10132 -1.35522 (15*2π)/1915128 weeks
16.32626 -.35012 (16*2π)/1915120 weeks
17.92745 -1.63753 (17*2π)/1915113 weeks
18-.00576 -1.90408 (18*2π)/1915106 weeks
19-.60831 -1.47083 (19*2π)/1915101 weeks
20-.10166 -.22663 (20*2π)/191596 weeks
21.74594 -1.24204 (21*2π)/191591 weeks
22-.13267 -1.26803 (22*2π)/191587 weeks
23.19621 -1.06997 (23*2π)/191583 weeks
24-.24412 -.89316 (24*2π)/191580 weeks
25.47401 -.44823 (25*2π)/191577 weeks
26.70193 -1.30052 (26*2π)/191574 weeks
27.14173 -1.68838 (27*2π)/191571 weeks
28-.62014 -1.37994 (28*2π)/191568 weeks
29-.42859 -.49613 (29*2π)/191566 weeks
30.1413 -.62118 (30*2π)/191564 weeks
31.25427 -.86436 (31*2π)/191562 weeks
32-.02775 -1.20548 (32*2π)/191560 weeks
33-.41255 -1.00518 (33*2π)/191558 weeks
34-.41994 -.60321 (34*2π)/191556 weeks
35-.14886 -.42298 (35*2π)/191555 weeks
36.03405 -.58858 (36*2π)/191553 weeks
37.01774 -.59659 (37*2π)/191552 weeks
38.03015 -.74391 (38*2π)/191550 weeks
39-.09774 -.76705 (39*2π)/191549 weeks
40-.21306 -.74084 (40*2π)/191548 weeks
41-.2768 -.67196 (41*2π)/191547 weeks
42-.47747 -.38906 (42*2π)/191546 weeks
43-.0433 -.1312 (43*2π)/191545 weeks
44.06024 -.40695 (44*2π)/191544 weeks
45.21029 -.32859 (45*2π)/191543 weeks
46.10015 -.90123 (46*2π)/191542 weeks
47-.23584 -.49111 (47*2π)/191541 weeks
48-.1301 -.60474 (48*2π)/191540 weeks
49-.16699 -.36236 (49*2π)/191539 weeks
50-.07396 -.54564 (50*2π)/191538 weeks
51-.23973 -.3901 (51*2π)/191538 weeks
52-.18014 -.30731 (52*2π)/191537 weeks
53.00189 -.30658 (53*2π)/191536 weeks
54.00071 -.34017 (54*2π)/191535 weeks
55.04598 -.49678 (55*2π)/191535 weeks
56-.26427 -.54966 (56*2π)/191534 weeks
57-.26514 -.25932 (57*2π)/191534 weeks
58-.17722 -.11325 (58*2π)/191533 weeks
59.09211 -.09232 (59*2π)/191532 weeks
60.20062 -.34929 (60*2π)/191532 weeks
61-.02551 -.4467 (61*2π)/191531 weeks
62-.07939 -.37541 (62*2π)/191531 weeks
63-.14639 -.24351 (63*2π)/191530 weeks
64.14952 -.14296 (64*2π)/191530 weeks
65.09657 -.47975 (65*2π)/191529 weeks
66-.07396 -.31751 (66*2π)/191529 weeks
67-.06023 -.3844 (67*2π)/191529 weeks
68-.03532 -.20724 (68*2π)/191528 weeks
69.10746 -.34651 (69*2π)/191528 weeks
70-.08116 -.32804 (70*2π)/191527 weeks
71-.00148 -.30713 (71*2π)/191527 weeks
72-.07877 -.19841 (72*2π)/191527 weeks
73.23395 -.25607 (73*2π)/191526 weeks
74.02539 -.55056 (74*2π)/191526 weeks
75-.115 -.30214 (75*2π)/191526 weeks
76-.02587 -.31995 (76*2π)/191525 weeks
77.04351 -.25848 (77*2π)/191525 weeks
78.07535 -.53058 (78*2π)/191525 weeks
79-.27614 -.42855 (79*2π)/191524 weeks
80-.14319 -.21679 (80*2π)/191524 weeks
81-.09336 -.22944 (81*2π)/191524 weeks
82-.02732 -.20371 (82*2π)/191523 weeks
83.02011 -.30841 (83*2π)/191523 weeks
84-.08827 -.39918 (84*2π)/191523 weeks
85-.22602 -.22282 (85*2π)/191523 weeks
86-.02462 -.13284 (86*2π)/191522 weeks
87.0118 -.24384 (87*2π)/191522 weeks
88-.00919 -.3457 (88*2π)/191522 weeks
89-.17317 -.35181 (89*2π)/191522 weeks
90-.19814 -.21428 (90*2π)/191521 weeks
91-.24616 -.07863 (91*2π)/191521 weeks
92.04967 .04079 (92*2π)/191521 weeks
93.16359 -.22332 (93*2π)/191521 weeks
94-.05439 -.34705 (94*2π)/191520 weeks
95-.11882 -.1869 (95*2π)/191520 weeks
96-.05152 -.15537 (96*2π)/191520 weeks
97.02365 -.15041 (97*2π)/191520 weeks
98-.02305 -.30158 (98*2π)/191520 weeks
99-.15337 -.1442 (99*2π)/191519 weeks
100-.04955 -.09516 (100*2π)/191519 weeks
101.06963 -.02557 (101*2π)/191519 weeks
102.14575 -.29004 (102*2π)/191519 weeks
103-.07725 -.27343 (103*2π)/191519 weeks
104-.07407 -.17024 (104*2π)/191518 weeks
105-.05222 -.04885 (105*2π)/191518 weeks
106.16603 -.09655 (106*2π)/191518 weeks
107.12149 -.25074 (107*2π)/191518 weeks
108.04737 -.31884 (108*2π)/191518 weeks
109-.05675 -.21939 (109*2π)/191518 weeks
110.05538 -.15996 (110*2π)/191517 weeks
111.13651 -.26335 (111*2π)/191517 weeks
112.03654 -.46159 (112*2π)/191517 weeks
113-.26197 -.34285 (113*2π)/191517 weeks
114-.15827 -.02925 (114*2π)/191517 weeks
115.12181 -.09939 (115*2π)/191517 weeks
116.11772 -.3514 (116*2π)/191517 weeks
117-.13555 -.43383 (117*2π)/191516 weeks
118-.27461 -.19997 (118*2π)/191516 weeks
119-.14529 -.0161 (119*2π)/191516 weeks
120.05682 -.06944 (120*2π)/191516 weeks
121.0743 -.23046 (121*2π)/191516 weeks
122-.07842 -.32258 (122*2π)/191516 weeks
123-.16045 -.16477 (123*2π)/191516 weeks
124-.08954 -.10445 (124*2π)/191515 weeks
125-.0114 -.09295 (125*2π)/191515 weeks
126.02121 -.20904 (126*2π)/191515 weeks
127-.13149 -.21522 (127*2π)/191515 weeks
128-.12024 -.04146 (128*2π)/191515 weeks
129.05354 -.00126 (129*2π)/191515 weeks
130.12494 -.19939 (130*2π)/191515 weeks
131-.02751 -.22964 (131*2π)/191515 weeks
132-.017 -.20576 (132*2π)/191515 weeks
133-.07169 -.14319 (133*2π)/191514 weeks
134.00303 -.13745 (134*2π)/191514 weeks
135-.00986 -.17122 (135*2π)/191514 weeks
136-.05509 -.15998 (136*2π)/191514 weeks
137.05347 -.06423 (137*2π)/191514 weeks
138.11131 -.24952 (138*2π)/191514 weeks
139-.03044 -.28852 (139*2π)/191514 weeks
140-.12802 -.26845 (140*2π)/191514 weeks
141-.18535 -.09735 (141*2π)/191514 weeks
142.01451 -.02116 (142*2π)/191513 weeks
143.08321 -.116 (143*2π)/191513 weeks
144.08856 -.25666 (144*2π)/191513 weeks
145-.0813 -.29366 (145*2π)/191513 weeks
146-.10662 -.18014 (146*2π)/191513 weeks
147-.11632 -.16157 (147*2π)/191513 weeks
148-.0335 -.07706 (148*2π)/191513 weeks
149-.01276 -.15739 (149*2π)/191513 weeks
150-.01004 -.14994 (150*2π)/191513 weeks
151-.01402 -.18774 (151*2π)/191513 weeks
152-.03498 -.22003 (152*2π)/191513 weeks
153-.12507 -.20945 (153*2π)/191513 weeks
154-.13221 -.13577 (154*2π)/191512 weeks
155-.1191 -.06659 (155*2π)/191512 weeks
156.01708 -.04548 (156*2π)/191512 weeks
157-.01035 -.19586 (157*2π)/191512 weeks
158-.10023 -.12629 (158*2π)/191512 weeks
159-.0542 -.0727 (159*2π)/191512 weeks
160-.00967 -.11175 (160*2π)/191512 weeks
161-.03109 -.12996 (161*2π)/191512 weeks
162-.05191 -.11645 (162*2π)/191512 weeks
163-.06528 -.06873 (163*2π)/191512 weeks
164.02022 -.01962 (164*2π)/191512 weeks
165.13501 -.11601 (165*2π)/191512 weeks
166.05901 -.28049 (166*2π)/191512 weeks
167-.11766 -.23035 (167*2π)/191511 weeks
168-.10464 -.11553 (168*2π)/191511 weeks
169-.05472 -.05949 (169*2π)/191511 weeks
170.02608 -.13362 (170*2π)/191511 weeks
171-.04222 -.13505 (171*2π)/191511 weeks
172-.00244 -.15459 (172*2π)/191511 weeks
173-.09654 -.13167 (173*2π)/191511 weeks
174.01078 -.06175 (174*2π)/191511 weeks
175-.00502 -.17619 (175*2π)/191511 weeks
176-.03967 -.11729 (176*2π)/191511 weeks
177-.01173 -.14741 (177*2π)/191511 weeks
178-.05305 -.15691 (178*2π)/191511 weeks
179-.05659 -.10337 (179*2π)/191511 weeks
180-.02812 -.13802 (180*2π)/191511 weeks
181-.0785 -.11976 (181*2π)/191511 weeks
182-.02505 -.06761 (182*2π)/191511 weeks
183-.02444 -.0998 (183*2π)/191510 weeks
184.01322 -.09129 (184*2π)/191510 weeks
185-.0046 -.1415 (185*2π)/191510 weeks
186-.00715 -.13426 (186*2π)/191510 weeks
187-.01974 -.14596 (187*2π)/191510 weeks
188-.05654 -.14402 (188*2π)/191510 weeks
189-.03757 -.06587 (189*2π)/191510 weeks
190.03306 -.13552 (190*2π)/191510 weeks
191-.01986 -.15492 (191*2π)/191510 weeks
192-.04526 -.17829 (192*2π)/191510 weeks
193-.07897 -.11806 (193*2π)/191510 weeks
194-.08736 -.0873 (194*2π)/191510 weeks
195.01688 -.01231 (195*2π)/191510 weeks
196.05196 -.16925 (196*2π)/191510 weeks
197-.02807 -.12239 (197*2π)/191510 weeks
198.01405 -.17789 (198*2π)/191510 weeks
199-.06525 -.13213 (199*2π)/191510 weeks
200.02122 -.13916 (200*2π)/191510 weeks
201-.07534 -.20563 (201*2π)/191510 weeks
202-.07528 -.12138 (202*2π)/19159 weeks
203-.07228 -.12389 (203*2π)/19159 weeks
204-.0538 -.07373 (204*2π)/19159 weeks
205-.00218 -.15772 (205*2π)/19159 weeks
206-.09061 -.13262 (206*2π)/19159 weeks
207-.08233 -.10055 (207*2π)/19159 weeks
208-.06387 -.03669 (208*2π)/19159 weeks
209.06639 -.07694 (209*2π)/19159 weeks
210-.01145 -.20442 (210*2π)/19159 weeks
211-.08315 -.13879 (211*2π)/19159 weeks
212-.06772 -.12641 (212*2π)/19159 weeks
213-.07281 -.09966 (213*2π)/19159 weeks
214-.04493 -.08241 (214*2π)/19159 weeks
215-.01394 -.10407 (215*2π)/19159 weeks
216-.0543 -.13963 (216*2π)/19159 weeks
217-.06142 -.0914 (217*2π)/19159 weeks
218-.02409 -.12921 (218*2π)/19159 weeks
219-.08432 -.12566 (219*2π)/19159 weeks
220-.08956 -.08781 (220*2π)/19159 weeks
221-.06442 -.04722 (221*2π)/19159 weeks
222-.00334 -.0728 (222*2π)/19159 weeks
223-.02386 -.10472 (223*2π)/19159 weeks
224-.04316 -.10818 (224*2π)/19159 weeks
225-.03466 -.07255 (225*2π)/19159 weeks
226-.02116 -.11133 (226*2π)/19158 weeks
227-.03383 -.10462 (227*2π)/19158 weeks
228-.02769 -.09983 (228*2π)/19158 weeks
229-.00854 -.11435 (229*2π)/19158 weeks
230-.03557 -.13771 (230*2π)/19158 weeks
231-.04847 -.13078 (231*2π)/19158 weeks
232-.06107 -.16407 (232*2π)/19158 weeks
233-.12749 -.13922 (233*2π)/19158 weeks
234-.14227 -.04693 (234*2π)/19158 weeks
235-.04192 -.00872 (235*2π)/19158 weeks
236-.02301 -.09215 (236*2π)/19158 weeks
237-.06591 -.08082 (237*2π)/19158 weeks
238-.06125 -.09692 (238*2π)/19158 weeks
239-.09352 -.01417 (239*2π)/19158 weeks
240.01362 -.01942 (240*2π)/19158 weeks
241.00611 -.07852 (241*2π)/19158 weeks
242-.0068 -.11811 (242*2π)/19158 weeks
243-.06894 -.08179 (243*2π)/19158 weeks
244-.01532 -.04058 (244*2π)/19158 weeks
245.01162 -.08334 (245*2π)/19158 weeks
246.01732 -.11102 (246*2π)/19158 weeks
247-.03984 -.16273 (247*2π)/19158 weeks
248-.11327 -.07176 (248*2π)/19158 weeks
249.03369 -.03456 (249*2π)/19158 weeks
250-.02015 -.1457 (250*2π)/19158 weeks
251-.0141 -.10389 (251*2π)/19158 weeks
252-.08248 -.17177 (252*2π)/19158 weeks
253-.09035 -.01911 (253*2π)/19158 weeks
254.00398 -.0908 (254*2π)/19158 weeks
255-.03142 -.09799 (255*2π)/19158 weeks
256-.0416 -.15369 (256*2π)/19157 weeks
257-.11609 -.06263 (257*2π)/19157 weeks
258-.02749 -.04691 (258*2π)/19157 weeks
259.0111 -.07909 (259*2π)/19157 weeks
260-.04065 -.16491 (260*2π)/19157 weeks
261-.12738 -.10356 (261*2π)/19157 weeks
262-.09445 -.0348 (262*2π)/19157 weeks
263-.02309 .0083 (263*2π)/19157 weeks
264.02933 -.08093 (264*2π)/19157 weeks
265-.01143 -.10355 (265*2π)/19157 weeks
266-.02983 -.12001 (266*2π)/19157 weeks
267-.03531 -.12541 (267*2π)/19157 weeks
268-.09353 -.12274 (268*2π)/19157 weeks
269-.07645 -.07722 (269*2π)/19157 weeks
270-.12307 -.06377 (270*2π)/19157 weeks
271-.03889 .02805 (271*2π)/19157 weeks
272.02815 -.08185 (272*2π)/19157 weeks
273-.04584 -.10282 (273*2π)/19157 weeks
274-.05611 -.07892 (274*2π)/19157 weeks
275-.06667 -.04269 (275*2π)/19157 weeks
276-.00022 -.02763 (276*2π)/19157 weeks
277.00937 -.09658 (277*2π)/19157 weeks
278-.02393 -.09715 (278*2π)/19157 weeks
279-.04467 -.10428 (279*2π)/19157 weeks
280-.05481 -.06438 (280*2π)/19157 weeks
281-.00307 -.06373 (281*2π)/19157 weeks
282-.01306 -.12662 (282*2π)/19157 weeks
283-.07812 -.11343 (283*2π)/19157 weeks
284-.06163 -.06896 (284*2π)/19157 weeks
285-.05965 -.05209 (285*2π)/19157 weeks
286-.01067 -.04424 (286*2π)/19157 weeks
287.01987 -.0827 (287*2π)/19157 weeks
288-.01068 -.17279 (288*2π)/19157 weeks
289-.117 -.13206 (289*2π)/19157 weeks
290-.07438 -.07196 (290*2π)/19157 weeks
291-.10443 -.0895 (291*2π)/19157 weeks
292-.07504 -.00267 (292*2π)/19157 weeks
293-.03177 -.0618 (293*2π)/19157 weeks
294-.03526 -.0239 (294*2π)/19157 weeks
295.0161 -.09132 (295*2π)/19156 weeks
296-.03916 -.11316 (296*2π)/19156 weeks
297-.07495 -.11409 (297*2π)/19156 weeks
298-.09207 -.04197 (298*2π)/19156 weeks
299-.04226 -.04932 (299*2π)/19156 weeks
300-.04327 -.05185 (300*2π)/19156 weeks
301-.02307 -.0763 (301*2π)/19156 weeks
302-.07133 -.06988 (302*2π)/19156 weeks
303-.02146 -.02595 (303*2π)/19156 weeks
304-.00488 -.07825 (304*2π)/19156 weeks
305-.01644 -.09198 (305*2π)/19156 weeks
306-.05312 -.12223 (306*2π)/19156 weeks
307-.06911 -.06065 (307*2π)/19156 weeks
308-.02607 -.08111 (308*2π)/19156 weeks
309-.05211 -.09137 (309*2π)/19156 weeks
310-.05272 -.08806 (310*2π)/19156 weeks
311-.07495 -.11023 (311*2π)/19156 weeks
312-.09872 -.05176 (312*2π)/19156 weeks
313-.04921 -.05871 (313*2π)/19156 weeks
314-.0743 -.06164 (314*2π)/19156 weeks
315-.05256 -.05831 (315*2π)/19156 weeks
316-.07769 -.0584 (316*2π)/19156 weeks
317-.05277 -.03486 (317*2π)/19156 weeks
318-.059 -.07515 (318*2π)/19156 weeks
319-.06943 -.02087 (319*2π)/19156 weeks
320-.0256 -.04104 (320*2π)/19156 weeks
321-.04597 -.04352 (321*2π)/19156 weeks
322-.02204 -.05648 (322*2π)/19156 weeks
323-.04697 -.07026 (323*2π)/19156 weeks
324-.0557 -.04673 (324*2π)/19156 weeks
325-.01083 -.04843 (325*2π)/19156 weeks
326-.03215 -.0927 (326*2π)/19156 weeks
327-.06678 -.07652 (327*2π)/19156 weeks
328-.07183 -.04399 (328*2π)/19156 weeks
329-.01288 -.03197 (329*2π)/19156 weeks
330-.02712 -.11975 (330*2π)/19156 weeks
331-.08038 -.07231 (331*2π)/19156 weeks
332-.08323 -.08986 (332*2π)/19156 weeks
333-.12047 -.01366 (333*2π)/19156 weeks
334-.03926 -.00014 (334*2π)/19156 weeks
335-.02428 -.02156 (335*2π)/19156 weeks
336-.00965 -.07553 (336*2π)/19156 weeks
337-.0838 -.05694 (337*2π)/19156 weeks
338-.02722 -.02909 (338*2π)/19156 weeks
339-.04898 -.06095 (339*2π)/19156 weeks
340-.04041 -.04697 (340*2π)/19156 weeks
341-.06084 -.0684 (341*2π)/19156 weeks
342-.06862 -.0147 (342*2π)/19156 weeks
343-.01356 -.0268 (343*2π)/19156 weeks
344-.0253 -.06771 (344*2π)/19156 weeks
345-.0653 -.07548 (345*2π)/19156 weeks
346-.07834 -.0268 (346*2π)/19156 weeks
347-.05636 -.01289 (347*2π)/19156 weeks
348-.01891 .00935 (348*2π)/19156 weeks
349.01422 -.0549 (349*2π)/19155 weeks
350-.04134 -.07384 (350*2π)/19155 weeks
351-.04529 -.04021 (351*2π)/19155 weeks
352-.04347 -.01661 (352*2π)/19155 weeks
353.01394 -.03161 (353*2π)/19155 weeks
354-.01152 -.0856 (354*2π)/19155 weeks
355-.05012 -.0562 (355*2π)/19155 weeks
356-.02091 -.04212 (356*2π)/19155 weeks
357-.02325 -.05687 (357*2π)/19155 weeks
358.00429 -.06327 (358*2π)/19155 weeks
359-.04642 -.12117 (359*2π)/19155 weeks
360-.08405 -.03698 (360*2π)/19155 weeks
361-.02523 -.04878 (361*2π)/19155 weeks
362-.02593 -.0411 (362*2π)/19155 weeks
363-.00396 -.10465 (363*2π)/19155 weeks
364-.0951 -.10046 (364*2π)/19155 weeks
365-.08507 -.02041 (365*2π)/19155 weeks
366-.02172 -.01072 (366*2π)/19155 weeks
367.00929 -.09567 (367*2π)/19155 weeks
368-.08726 -.1008 (368*2π)/19155 weeks
369-.09116 -.05528 (369*2π)/19155 weeks
370-.06524 -.00668 (370*2π)/19155 weeks
371-.00848 -.06621 (371*2π)/19155 weeks
372-.11068 -.09347 (372*2π)/19155 weeks
373-.09513 .01069 (373*2π)/19155 weeks
374-.04389 .00369 (374*2π)/19155 weeks
375.00148 -.01079 (375*2π)/19155 weeks
376-.01372 -.08012 (376*2π)/19155 weeks
377-.07163 -.08786 (377*2π)/19155 weeks
378-.11239 -.02024 (378*2π)/19155 weeks
379-.04249 .02471 (379*2π)/19155 weeks
380-.00854 -.02063