Back to list of Stocks    See Also: Seasonal Analysis of AEPGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AEP (American Electric Power Company)


AEP (American Electric Power Company) appears to have interesting cyclic behaviour every 246 weeks (2.7716*sine), 154 weeks (2.1236*sine), and 224 weeks (2.0564*sine).

AEP (American Electric Power Company) has an average price of 14.62 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1970 to 2/13/2017 for AEP (American Electric Power Company), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.6194   0 
16.35184 -13.27878 (1*2π)/24592,459 weeks
24.01135 -6.30869 (2*2π)/24591,230 weeks
32.59005 -5.95473 (3*2π)/2459820 weeks
41.45484 -4.4346 (4*2π)/2459615 weeks
51.917 -4.51151 (5*2π)/2459492 weeks
6.40094 -4.38838 (6*2π)/2459410 weeks
7-.45992 -3.05293 (7*2π)/2459351 weeks
8-.15495 -2.07875 (8*2π)/2459307 weeks
9.67854 -1.69399 (9*2π)/2459273 weeks
10.55079 -2.77157 (10*2π)/2459246 weeks
11-.36094 -2.05645 (11*2π)/2459224 weeks
12.20923 -1.69385 (12*2π)/2459205 weeks
13-.38664 -1.79709 (13*2π)/2459189 weeks
14-.15078 -.86942 (14*2π)/2459176 weeks
15.81182 -1.01162 (15*2π)/2459164 weeks
16.22874 -2.12356 (16*2π)/2459154 weeks
17-.57773 -1.16952 (17*2π)/2459145 weeks
18.11791 -.90729 (18*2π)/2459137 weeks
19-.04697 -1.04606 (19*2π)/2459129 weeks
20.23085 -.80491 (20*2π)/2459123 weeks
21.3077 -1.20203 (21*2π)/2459117 weeks
22.08935 -1.22535 (22*2π)/2459112 weeks
23-.17266 -1.09244 (23*2π)/2459107 weeks
24.03665 -.84921 (24*2π)/2459102 weeks
25.05112 -1.06941 (25*2π)/245998 weeks
26-.07126 -1.01112 (26*2π)/245995 weeks
27-.25744 -.93281 (27*2π)/245991 weeks
28-.103 -.82857 (28*2π)/245988 weeks
29-.19379 -.87997 (29*2π)/245985 weeks
30-.42578 -.89825 (30*2π)/245982 weeks
31-.40739 -.40464 (31*2π)/245979 weeks
32-.0072 -.45203 (32*2π)/245977 weeks
33-.1603 -.63083 (33*2π)/245975 weeks
34-.09114 -.49177 (34*2π)/245972 weeks
35-.15046 -.58482 (35*2π)/245970 weeks
36-.17576 -.4332 (36*2π)/245968 weeks
37-.13134 -.36674 (37*2π)/245966 weeks
38.07535 -.40708 (38*2π)/245965 weeks
39-.10444 -.62178 (39*2π)/245963 weeks
40-.24058 -.42601 (40*2π)/245961 weeks
41-.10626 -.27652 (41*2π)/245960 weeks
42-.03171 -.38377 (42*2π)/245959 weeks
43-.16034 -.33993 (43*2π)/245957 weeks
44.03874 -.18063 (44*2π)/245956 weeks
45.08539 -.40109 (45*2π)/245955 weeks
46-.02327 -.29819 (46*2π)/245953 weeks
47.10592 -.3578 (47*2π)/245952 weeks
48-.0014 -.39748 (48*2π)/245951 weeks
49-.00307 -.35874 (49*2π)/245950 weeks
50-.00882 -.29058 (50*2π)/245949 weeks
51.11371 -.33066 (51*2π)/245948 weeks
52.00928 -.48489 (52*2π)/245947 weeks
53-.07404 -.34654 (53*2π)/245946 weeks
54.02797 -.38413 (54*2π)/245946 weeks
55-.11365 -.42357 (55*2π)/245945 weeks
56-.15663 -.24815 (56*2π)/245944 weeks
57-.0473 -.24534 (57*2π)/245943 weeks
58-.05341 -.25147 (58*2π)/245942 weeks
59-.03859 -.18571 (59*2π)/245942 weeks
60.01609 -.21155 (60*2π)/245941 weeks
61.06248 -.19603 (61*2π)/245940 weeks
62.07707 -.26685 (62*2π)/245940 weeks
63.04886 -.25929 (63*2π)/245939 weeks
64.07934 -.26694 (64*2π)/245938 weeks
65.08859 -.28104 (65*2π)/245938 weeks
66.07278 -.31511 (66*2π)/245937 weeks
67.08929 -.38461 (67*2π)/245937 weeks
68-.10913 -.33971 (68*2π)/245936 weeks
69.00271 -.19516 (69*2π)/245936 weeks
70.04158 -.29819 (70*2π)/245935 weeks
71-.02304 -.24228 (71*2π)/245935 weeks
72.07454 -.2142 (72*2π)/245934 weeks
73.10423 -.3446 (73*2π)/245934 weeks
74-.02282 -.34859 (74*2π)/245933 weeks
75-.01181 -.28454 (75*2π)/245933 weeks
76.04838 -.31851 (76*2π)/245932 weeks
77-.04187 -.43205 (77*2π)/245932 weeks
78-.22041 -.30279 (78*2π)/245932 weeks
79-.16465 -.13952 (79*2π)/245931 weeks
80-.02597 -.09509 (80*2π)/245931 weeks
81-.00486 -.15702 (81*2π)/245930 weeks
82.06475 -.13335 (82*2π)/245930 weeks
83.05399 -.25969 (83*2π)/245930 weeks
84-.06217 -.19368 (84*2π)/245929 weeks
85.04679 -.13076 (85*2π)/245929 weeks
86.11488 -.14925 (86*2π)/245929 weeks
87.12867 -.28127 (87*2π)/245928 weeks
88.03228 -.32913 (88*2π)/245928 weeks
89-.01709 -.21695 (89*2π)/245928 weeks
90.04596 -.26402 (90*2π)/245927 weeks
91-.04063 -.26444 (91*2π)/245927 weeks
92.02181 -.16618 (92*2π)/245927 weeks
93.0643 -.27066 (93*2π)/245926 weeks
94-.00305 -.28742 (94*2π)/245926 weeks
95-.04651 -.2098 (95*2π)/245926 weeks
96.02103 -.24905 (96*2π)/245926 weeks
97-.06976 -.22014 (97*2π)/245925 weeks
98.01491 -.15928 (98*2π)/245925 weeks
99.02725 -.26211 (99*2π)/245925 weeks
100-.01568 -.17513 (100*2π)/245925 weeks
101.04282 -.25451 (101*2π)/245924 weeks
102-.02995 -.26661 (102*2π)/245924 weeks
103-.0717 -.2224 (103*2π)/245924 weeks
104-.02768 -.15927 (104*2π)/245924 weeks
105.00289 -.16501 (105*2π)/245923 weeks
106.04042 -.21664 (106*2π)/245923 weeks
107.00448 -.25532 (107*2π)/245923 weeks
108-.03793 -.23537 (108*2π)/245923 weeks
109-.03828 -.19591 (109*2π)/245923 weeks
110.02118 -.19708 (110*2π)/245922 weeks
111-.01019 -.25515 (111*2π)/245922 weeks
112-.04703 -.21857 (112*2π)/245922 weeks
113-.01482 -.23693 (113*2π)/245922 weeks
114-.08201 -.22292 (114*2π)/245922 weeks
115-.06959 -.16894 (115*2π)/245921 weeks
116-.01501 -.17021 (116*2π)/245921 weeks
117-.04038 -.23206 (117*2π)/245921 weeks
118-.07833 -.19465 (118*2π)/245921 weeks
119-.05118 -.17454 (119*2π)/245921 weeks
120-.04404 -.18673 (120*2π)/245920 weeks
121-.11155 -.19031 (121*2π)/245920 weeks
122-.07382 -.10854 (122*2π)/245920 weeks
123.00578 -.09761 (123*2π)/245920 weeks
124-.00004 -.23274 (124*2π)/245920 weeks
125-.11205 -.17929 (125*2π)/245920 weeks
126-.0752 -.10261 (126*2π)/245920 weeks
127-.01978 -.11303 (127*2π)/245919 weeks
128-.01118 -.13285 (128*2π)/245919 weeks
129-.03074 -.11599 (129*2π)/245919 weeks
130.02402 -.15936 (130*2π)/245919 weeks
131-.05864 -.16988 (131*2π)/245919 weeks
132-.04539 -.08182 (132*2π)/245919 weeks
133.04513 -.13706 (133*2π)/245918 weeks
134.00756 -.18414 (134*2π)/245918 weeks
135-.05395 -.21096 (135*2π)/245918 weeks
136-.08579 -.11574 (136*2π)/245918 weeks
137-.00589 -.10088 (137*2π)/245918 weeks
138.00082 -.12298 (138*2π)/245918 weeks
139-.00517 -.14802 (139*2π)/245918 weeks
140.01259 -.15119 (140*2π)/245918 weeks
141-.04876 -.19456 (141*2π)/245917 weeks
142-.09985 -.10973 (142*2π)/245917 weeks
143.01579 -.05164 (143*2π)/245917 weeks
144.02568 -.16383 (144*2π)/245917 weeks
145-.02875 -.13675 (145*2π)/245917 weeks
146.0366 -.14671 (146*2π)/245917 weeks
147-.06053 -.19824 (147*2π)/245917 weeks
148-.05348 -.0954 (148*2π)/245917 weeks
149.02266 -.09839 (149*2π)/245917 weeks
150-.01678 -.16316 (150*2π)/245916 weeks
151-.01653 -.1251 (151*2π)/245916 weeks
152-.02001 -.14421 (152*2π)/245916 weeks
153-.07048 -.14032 (153*2π)/245916 weeks
154-.01549 -.0632 (154*2π)/245916 weeks
155.00308 -.09572 (155*2π)/245916 weeks
156.0417 -.08922 (156*2π)/245916 weeks
157.06871 -.14712