Back to list of Stocks    See Also: Seasonal Analysis of AEPGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AEP (American Electric Power Company)


AEP (American Electric Power Company) appears to have interesting cyclic behaviour every 245 weeks (2.6591*sine), 223 weeks (2.1166*sine), and 163 weeks (.7187*cosine).

AEP (American Electric Power Company) has an average price of 14.56 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 1/2/1970 to 12/5/2016 for AEP (American Electric Power Company), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
014.55675   0 
16.20754 -13.24747 (1*2π)/24492,449 weeks
23.88028 -6.18553 (2*2π)/24491,225 weeks
32.55021 -5.82254 (3*2π)/2449816 weeks
41.4195 -4.31356 (4*2π)/2449612 weeks
51.98409 -4.34257 (5*2π)/2449490 weeks
6.54403 -4.35443 (6*2π)/2449408 weeks
7-.41462 -3.12466 (7*2π)/2449350 weeks
8-.21946 -2.1098 (8*2π)/2449306 weeks
9.60092 -1.57074 (9*2π)/2449272 weeks
10.68896 -2.65914 (10*2π)/2449245 weeks
11-.29065 -2.11663 (11*2π)/2449223 weeks
12.23565 -1.6693 (12*2π)/2449204 weeks
13-.32626 -1.89152 (13*2π)/2449188 weeks
14-.29969 -.92238 (14*2π)/2449175 weeks
15.71869 -.78167 (15*2π)/2449163 weeks
16.481 -2.01719 (16*2π)/2449153 weeks
17-.52764 -1.33237 (17*2π)/2449144 weeks
18.05545 -.89364 (18*2π)/2449136 weeks
19-.06201 -1.04482 (19*2π)/2449129 weeks
20.15264 -.70563 (20*2π)/2449122 weeks
21.38333 -1.03752 (21*2π)/2449117 weeks
22.24051 -1.14223 (22*2π)/2449111 weeks
23-.04512 -1.12352 (23*2π)/2449106 weeks
24.0752 -.81672 (24*2π)/2449102 weeks
25.19319 -1.00509 (25*2π)/244998 weeks
26.10235 -1.00731 (26*2π)/244994 weeks
27-.09773 -1.01947 (27*2π)/244991 weeks
28.0167 -.87309 (28*2π)/244987 weeks
29-.0143 -.95483 (29*2π)/244984 weeks
30-.21471 -1.12595 (30*2π)/244982 weeks
31-.44974 -.69504 (31*2π)/244979 weeks
32-.08755 -.52246 (32*2π)/244977 weeks
33-.12502 -.73426 (33*2π)/244974 weeks
34-.10885 -.58369 (34*2π)/244972 weeks
35-.10729 -.69857 (35*2π)/244970 weeks
36-.2005 -.59281 (36*2π)/244968 weeks
37-.22311 -.50191 (37*2π)/244966 weeks
38-.00848 -.39415 (38*2π)/244964 weeks
39-.00757 -.67324 (39*2π)/244963 weeks
40-.22148 -.62947 (40*2π)/244961 weeks
41-.22072 -.43126 (41*2π)/244960 weeks
42-.09681 -.46301 (42*2π)/244958 weeks
43-.23575 -.51844 (43*2π)/244957 weeks
44-.18986 -.25461 (44*2π)/244956 weeks
45-.00933 -.37425 (45*2π)/244954 weeks
46-.14575 -.34881 (46*2π)/244953 weeks
47-.0015 -.30287 (47*2π)/244952 weeks
48-.03681 -.39112 (48*2π)/244951 weeks
49-.05281 -.37759 (49*2π)/244950 weeks
50-.11627 -.32258 (50*2π)/244949 weeks
51.00458 -.2357 (51*2π)/244948 weeks
52.06863 -.41315 (52*2π)/244947 weeks
53-.07184 -.38767 (53*2π)/244946 weeks
54.03983 -.34085 (54*2π)/244945 weeks
55.00248 -.48539 (55*2π)/244945 weeks
56-.1636 -.42885 (56*2π)/244944 weeks
57-.11896 -.35723 (57*2π)/244943 weeks
58-.121 -.36726 (58*2π)/244942 weeks
59-.1767 -.31231 (59*2π)/244942 weeks
60-.14484 -.28514 (60*2π)/244941 weeks
61-.13591 -.217 (61*2π)/244940 weeks
62-.0708 -.2294 (62*2π)/244940 weeks
63-.08796 -.23756 (63*2π)/244939 weeks
64-.06383 -.21042 (64*2π)/244938 weeks
65-.04129 -.18845 (65*2π)/244938 weeks
66-.01903 -.19853 (66*2π)/244937 weeks
67.09994 -.20909 (67*2π)/244937 weeks
68-.02241 -.37611 (68*2π)/244936 weeks
69-.10352 -.23066 (69*2π)/244935 weeks
70-.00546 -.23945 (70*2π)/244935 weeks
71-.0872 -.26887 (71*2π)/244934 weeks
72-.09288 -.15545 (72*2π)/244934 weeks
73.04936 -.15061 (73*2π)/244934 weeks
74.02925 -.25479 (74*2π)/244933 weeks
75-.01997 -.23073 (75*2π)/244933 weeks
76.04331 -.15998 (76*2π)/244932 weeks
77.17677 -.27334 (77*2π)/244932 weeks
78.0451 -.43691 (78*2π)/244931 weeks
79-.10482 -.4072 (79*2π)/244931 weeks
80-.14524 -.27767 (80*2π)/244931 weeks
81-.1222 -.27598 (81*2π)/244930 weeks
82-.13931 -.17029 (82*2π)/244930 weeks
83-.01172 -.19288 (83*2π)/244930 weeks
84-.09744 -.29985 (84*2π)/244929 weeks
85-.14657 -.21234 (85*2π)/244929 weeks
86-.15888 -.11142 (86*2π)/244928 weeks
87-.03611 -.0803 (87*2π)/244928 weeks
88.04092 -.16486 (88*2π)/244928 weeks
89-.06448 -.18806 (89*2π)/244928 weeks
90-.00322 -.13921 (90*2π)/244927 weeks
91-.00451 -.23529 (91*2π)/244927 weeks
92-.10255 -.16163 (92*2π)/244927 weeks
93-.01066 -.11693 (93*2π)/244926 weeks
94.03554 -.16264 (94*2π)/244926 weeks
95-.04581 -.2003 (95*2π)/244926 weeks
96.01475 -.14475 (96*2π)/244926 weeks
97-.01958 -.23986 (97*2π)/244925 weeks
98-.09121 -.16242 (98*2π)/244925 weeks
99.01254 -.15438 (99*2π)/244925 weeks
100-.08416 -.16744 (100*2π)/244924 weeks
101-.01103 -.10572 (101*2π)/244924 weeks
102.02859 -.14902 (102*2π)/244924 weeks
103.01341 -.21457 (103*2π)/244924 weeks
104-.04801 -.19564 (104*2π)/244924 weeks
105-.0847 -.17141 (105*2π)/244923 weeks
106-.05533 -.11518 (106*2π)/244923 weeks
107-.0038 -.11778 (107*2π)/244923 weeks
108.00523 -.15504 (108*2π)/244923 weeks
109-.03184 -.17987 (109*2π)/244922 weeks
110-.0507 -.11261 (110*2π)/244922 weeks
111.01039 -.11321 (111*2π)/244922 weeks
112-.0119 -.14548 (112*2π)/244922 weeks
113.0225 -.10053 (113*2π)/244922 weeks
114.03906 -.15936 (114*2π)/244921 weeks
115-.00719 -.18374 (115*2π)/244921 weeks
116-.03902 -.12816 (116*2π)/244921 weeks
117.02512 -.12367 (117*2π)/244921 weeks
118.02027 -.16522 (118*2π)/244921 weeks
119.00282 -.15305 (119*2π)/244921 weeks
120.0165 -.11884 (120*2π)/244920 weeks
121.06124 -.19667 (121*2π)/244920 weeks
122-.00173 -.22633 (122*2π)/244920 weeks
123-.0946 -.15718 (123*2π)/244920 weeks
124.02476 -.08524 (124*2π)/244920 weeks
125.05779 -.18221 (125*2π)/244920 weeks
126-.00102 -.21549 (126*2π)/244919 weeks
127-.02488 -.18751 (127*2π)/244919 weeks
128-.01703 -.16331 (128*2π)/244919 weeks
129-.05207 -.19499 (129*2π)/244919 weeks
130-.03518 -.11118 (130*2π)/244919 weeks
131.02752 -.16162 (131*2π)/244919 weeks
132-.05751 -.22133 (132*2π)/244919 weeks
133-.07881 -.13501 (133*2π)/244918 weeks
134-.05451 -.09533 (134*2π)/244918 weeks
135.03911 -.10716 (135*2π)/244918 weeks
136.01324 -.19542 (136*2π)/244918 weeks
137-.03251 -.17033 (137*2π)/244918 weeks
138-.05025 -.15397 (138*2π)/244918 weeks
139-.04025 -.15054 (139*2π)/244918 weeks
140-.06158 -.0978 (140*2π)/244917 weeks
141.02699 -.08912 (141*2π)/244917 weeks
142.04157 -.20554 (142*2π)/244917 weeks
143-.08629 -.18726 (143*2π)/244917 weeks
144-.04181 -.11874 (144*2π)/244917 weeks
145-.0385 -.17198 (145*2π)/244917 weeks
146-.08118 -.0848 (146*2π)/244917 weeks
147.03159 -.10683 (147*2π)/244917 weeks
148-.00055 -.17735 (148*2π)/244917 weeks
149-.0718 -.13386 (149*2π)/244916 weeks
150-.01857 -.12243 (150*2π)/244916 weeks
151-.0401 -.12541 (151*2π)/244916 weeks
152-.0319 -.0964 (152*2π)/244916 weeks
153.04117 -.14483 (153*2π)/244916 weeks
154-.0209 -.17245 (154*2π)/244916 weeks
155-.02138 -.18741 (155*2π)/244916 weeks
156-.0793 -.19461 (156*2π)/244916 weeks
157-.11536 -.12606 (157*2π)/244916 weeks
158-.05304 -.13001 (158*2π)/244916 weeks
159-.11814 -.12003 (159*2π)/244915 weeks
160-.07141 -.06227 (160*2π)/244915 weeks
161-.03356