Back to list of Stocks    See Also: Seasonal Analysis of ADIGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of ADI (Analog Devices, Inc.)


ADI (Analog Devices, Inc.) appears to have interesting cyclic behaviour every 161 weeks (3.1651*sine), 175 weeks (2.3864*cosine), and 193 weeks (2.2528*cosine).

ADI (Analog Devices, Inc.) has an average price of 18.14 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 3/13/2017 for ADI (Analog Devices, Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
018.13991   0 
13.81204 -17.44134 (1*2π)/19301,930 weeks
26.56341 -3.11078 (2*2π)/1930965 weeks
32.13751 -10.08152 (3*2π)/1930643 weeks
4.48268 -4.16317 (4*2π)/1930483 weeks
5.42747 -6.0705 (5*2π)/1930386 weeks
6-.45861 -1.2195 (6*2π)/1930322 weeks
72.09561 -4.67097 (7*2π)/1930276 weeks
8-1.71868 -1.795 (8*2π)/1930241 weeks
92.10919 -2.81235 (9*2π)/1930214 weeks
10-2.25282 -1.96461 (10*2π)/1930193 weeks
112.38643 -.20715 (11*2π)/1930175 weeks
12-.3327 -3.16511 (12*2π)/1930161 weeks
13.60189 -.56011 (13*2π)/1930148 weeks
14-.22979 -2.34281 (14*2π)/1930138 weeks
15.27948 -.32 (15*2π)/1930129 weeks
16.18346 -1.82989 (16*2π)/1930121 weeks
17.60059 -.40748 (17*2π)/1930114 weeks
18.14325 -2.01303 (18*2π)/1930107 weeks
19.21005 .05741 (19*2π)/1930102 weeks
201.51804 -2.00811 (20*2π)/193097 weeks
21-.75396 -1.17472 (21*2π)/193092 weeks
221.1834 -.77929 (22*2π)/193088 weeks
23-.29241 -1.71837 (23*2π)/193084 weeks
24.63309 -.43167 (24*2π)/193080 weeks
25.27017 -1.81558 (25*2π)/193077 weeks
26.17355 -.76383 (26*2π)/193074 weeks
27.06392 -1.86454 (27*2π)/193071 weeks
28-.77741 -.53318 (28*2π)/193069 weeks
29.46279 -.91329 (29*2π)/193067 weeks
30-.18202 -.90584 (30*2π)/193064 weeks
31.41074 -1.13328 (31*2π)/193062 weeks
32-.74521 -.9428 (32*2π)/193060 weeks
33.03162 -.25864 (33*2π)/193058 weeks
34-.09007 -.66312 (34*2π)/193057 weeks
35.14173 -.53629 (35*2π)/193055 weeks
36-.12161 -.56831 (36*2π)/193054 weeks
37.48986 -.28148 (37*2π)/193052 weeks
38.17073 -.95607 (38*2π)/193051 weeks
39.09854 -.60321 (39*2π)/193049 weeks
40.06069 -.90935 (40*2π)/193048 weeks
41-.08554 -.43524 (41*2π)/193047 weeks
42.30149 -.56044 (42*2π)/193046 weeks
43.14772 -.79198 (43*2π)/193045 weeks
44.02297 -.76242 (44*2π)/193044 weeks
45-.11653 -.69866 (45*2π)/193043 weeks
46-.13271 -.53289 (46*2π)/193042 weeks
47.08587 -.50412 (47*2π)/193041 weeks
48-.21313 -.70456 (48*2π)/193040 weeks
49-.01826 -.29504 (49*2π)/193039 weeks
50.03721 -.53946 (50*2π)/193039 weeks
51.13331 -.36695 (51*2π)/193038 weeks
52.0381 -.67383 (52*2π)/193037 weeks
53-.17081 -.43313 (53*2π)/193036 weeks
54.22575 -.28405 (54*2π)/193036 weeks
55-.00327 -.77202 (55*2π)/193035 weeks
56-.00242 -.17128 (56*2π)/193034 weeks
57.12323 -.77456 (57*2π)/193034 weeks
58-.07543 -.26093 (58*2π)/193033 weeks
59.13593 -.6953 (59*2π)/193033 weeks
60-.09012 -.3246 (60*2π)/193032 weeks
61.07052 -.65359 (61*2π)/193032 weeks
62-.26443 -.22633 (62*2π)/193031 weeks
63.25383 -.44678 (63*2π)/193031 weeks
64-.0845 -.44995 (64*2π)/193030 weeks
65.12894 -.54588 (65*2π)/193030 weeks
66-.21295 -.48026 (66*2π)/193029 weeks
67.14485 -.39614 (67*2π)/193029 weeks
68-.23499 -.60749 (68*2π)/193028 weeks
69-.01006 -.19558 (69*2π)/193028 weeks
70-.09569 -.5403 (70*2π)/193028 weeks
71-.15623 -.15477 (71*2π)/193027 weeks
72.09227 -.43326 (72*2π)/193027 weeks
73-.21917 -.37419 (73*2π)/193026 weeks
74-.02429 -.31139 (74*2π)/193026 weeks
75-.11826 -.22483 (75*2π)/193026 weeks
76.06598 -.2963 (76*2π)/193025 weeks
77-.15368 -.19866 (77*2π)/193025 weeks
78.20569 -.21231 (78*2π)/193025 weeks
79-.09934 -.37568 (79*2π)/193024 weeks
80.19121 -.09577 (80*2π)/193024 weeks
81.09703 -.43998 (81*2π)/193024 weeks
82.17617 -.20114 (82*2π)/193024 weeks
83.23455 -.67184 (83*2π)/193023 weeks
84-.16441 -.4286 (84*2π)/193023 weeks
85.09585 -.45459 (85*2π)/193023 weeks
86-.23442 -.39729 (86*2π)/193022 weeks
87.09852 -.32857 (87*2π)/193022 weeks
88-.18145 -.54005 (88*2π)/193022 weeks
89-.0044 -.25386 (89*2π)/193022 weeks
90-.10624 -.56706 (90*2π)/193021 weeks
91-.17698 -.22801 (91*2π)/193021 weeks
92-.12433 -.41857 (92*2π)/193021 weeks
93-.24748 -.23914 (93*2π)/193021 weeks
94-.19574 -.23429 (94*2π)/193021 weeks
95-.11127 -.06952 (95*2π)/193020 weeks
96.00217 -.27312 (96*2π)/193020 weeks
97-.11951 -.20759 (97*2π)/193020 weeks
98-.06811 -.19135 (98*2π)/193020 weeks
99-.04741 -.20836 (99*2π)/193019 weeks
100-.1328 -.15408 (100*2π)/193019 weeks
101.07549 -.12448 (101*2π)/193019 weeks
102-.04132 -.30542 (102*2π)/193019 weeks
103-.05708 -.1042 (103*2π)/193019 weeks
104.05997 -.23484 (104*2π)/193019 weeks
105-.06359 -.19975 (105*2π)/193018 weeks
106-.07753 -.19647 (106*2π)/193018 weeks
107-.03754 -.03218 (107*2π)/193018 weeks
108.15454 -.19359 (108*2π)/193018 weeks
109-.02142 -.19232 (109*2π)/193018 weeks
110.14156 -.16053 (110*2π)/193018 weeks
111.00252 -.27866 (111*2π)/193017 weeks
112.09705 -.16581 (112*2π)/193017 weeks
113.07051 -.32985 (113*2π)/193017 weeks
114.02462 -.25161 (114*2π)/193017 weeks
115-.01293 -.30704 (115*2π)/193017 weeks
116-.00798 -.14528 (116*2π)/193017 weeks
117.15101 -.38459 (117*2π)/193016 weeks
118-.23039 -.27764 (118*2π)/193016 weeks
119.14639 -.21296 (119*2π)/193016 weeks
120-.29397 -.31122 (120*2π)/193016 weeks
121.15671 .02323 (121*2π)/193016 weeks
122-.03877 -.43153 (122*2π)/193016 weeks
123-.00484 -.08246 (123*2π)/193016 weeks
124.01595 -.43332 (124*2π)/193016 weeks
125-.17927 -.06689 (125*2π)/193015 weeks
126.17045 -.26527 (126*2π)/193015 weeks
127-.23404 -.19325 (127*2π)/193015 weeks
128.24753 -.113 (128*2π)/193015 weeks
129-.16433 -.4014 (129*2π)/193015 weeks
130.08988 -.02201 (130*2π)/193015 weeks
131-.04075 -.42602 (131*2π)/193015 weeks
132-.05476 -.03941 (132*2π)/193015 weeks
133.09592 -.39999 (133*2π)/193015 weeks
134-.15911 -.15839 (134*2π)/193014 weeks
135.1041 -.29059 (135*2π)/193014 weeks
136-.20657 -.20615 (136*2π)/193014 weeks
137.13679 -.22164 (137*2π)/193014 weeks
138-.19981 -.28792 (138*2π)/193014 weeks
139.07245 -.15408 (139*2π)/193014 weeks
140-.22649 -.29967 (140*2π)/193014 weeks
141-.01605 .01276 (141*2π)/193014 weeks
142-.03014 -.23431 (142*2π)/193014 weeks
143.01361 -.06447 (143*2π)/193013 weeks
144.03757 -.24581 (144*2π)/193013 weeks
145.01298 -.12247 (145*2π)/193013 weeks
146.02759 -.29795 (146*2π)/193013 weeks
147-.02392 -.11628 (147*2π)/193013 weeks
148.11394 -.38397 (148*2π)/193013 weeks
149-.19172 -.17951 (149*2π)/193013 weeks
150.16087 -.23954 (150*2π)/193013 weeks
151-.22809 -.33082 (151*2π)/193013 weeks
152.07026 -.0525 (152*2π)/193013 weeks
153-.15666 -.43261 (153*2π)/193013 weeks
154-.08534 .00993 (154*2π)/193013 weeks
155-.0665 -.41161 (155*2π)/193012 weeks
156-.1493 .04642 (156*2π)/193012 weeks
157.08788 -.31772 (157*2π)/193012 weeks
158-.19594 -.05268 (158*2π)/193012 weeks
159.11165 -.24195 (159*2π)/193012 weeks
160-.21195 -.11936 (160*2π)/193012 weeks
161.13241 -.15895 (161*2π)/193012 weeks
162-.18782 -.18638 (162*2π)/193012 weeks
163.1871 -.06016 (163*2π)/193012 weeks
164-.1101 -.41444 (164*2π)/193012 weeks
165-.02851 -.07751 (165*2π)/193012 weeks
166-.05581 -.40175 (166*2π)/193012 weeks
167-.19884 -.05845 (167*2π)/193012 weeks
168.02428 -.22236 (168*2π)/193011 weeks
169-.21389 -.13484 (169*2π)/193011 weeks
170.01395 -.09285 (170*2π)/193011 weeks
171-.1386 -.15576 (171*2π)/193011 weeks
172.0474 -.04778 (172*2π)/193011 weeks
173-.05885 -.26927 (173*2π)/193011 weeks
174-.07679 -.06761 (174*2π)/193011 weeks
175.00119 -.1978 (175*2π)/193011 weeks
176-.04571 -.11047 (176*2π)/193011 weeks
177.00391 -.20236 (177*2π)/193011 weeks
178-.0928 -.16296 (178*2π)/193011 weeks
179-.05412 -.11927 (179*2π)/193011 weeks
180.01343 -.15191 (180*2π)/193011 weeks
181-.08188 -.22123 (181*2π)/193011 weeks
182-.07159 -.06022 (182*2π)/193011 weeks
183.0377 -.16576 (183*2π)/193011 weeks
184-.10188 -.20029 (184*2π)/193010 weeks
185-.02893 -.109 (185*2π)/193010 weeks
186-.04459 -.19333 (186*2π)/193010 weeks
187-.04323 -.08195 (187*2π)/193010 weeks
188.02166 -.23445 (188*2π)/193010 weeks
189-.13074 -.11419 (189*2π)/193010 weeks
190.07639 -.19583 (190*2π)/193010 weeks
191-.15857 -.21295 (191*2π)/193010 weeks
192-.00713 -.10943 (192*2π)/193010 weeks
193-.08413 -.2023 (193*2π)/193010 weeks
194-.03194 -.11676 (194*2π)/193010 weeks
195-.04463 -.24136 (195*2π)/193010 weeks
196-.13712 -.17863 (196*2π)/193010 weeks
197-.11813 -.16351 (197*2π)/193010 weeks
198-.157 -.12493 (198*2π)/193010 weeks
199-.07837 -.05289 (199*2π)/193010 weeks
200-.02073 -.15374 (200*2π)/193010 weeks
201-.12724 -.10145 (201*2π)/193010 weeks
202-.03591 -.09574 (202*2π)/193010 weeks
203-.08674 -.13597 (203*2π)/193010 weeks
204-.08708 -.11829 (204*2π)/19309 weeks
205-.08283 -.09043 (205*2π)/19309 weeks
206-.03523 -.10696 (206*2π)/19309 weeks
207-.09168 -.12719 (207*2π)/19309 weeks
208-.05423 -.0494 (208*2π)/19309 weeks
209-.02305 -.13147 (209*2π)/19309 weeks
210-.08201 -.11701 (210*2π)/19309 weeks
211-.04861 -.09709 (211*2π)/19309 weeks
212-.08572 -.09609 (212*2π)/19309 weeks
213-.01627 -.05658 (213*2π)/19309 weeks
214-.02155 -.13724 (214*2π)/19309 weeks
215-.07123 -.13277 (215*2π)/19309 weeks
216-.06784 -.09108 (216*2π)/19309 weeks
217-.07996 -.12817 (217*2π)/19309 weeks
218-.10495 -.01287 (218*2π)/19309 weeks
219.04837 -.10438 (219*2π)/19309 weeks
220-.11733 -.12634 (220*2π)/19309 weeks
221-.01383 -.02675 (221*2π)/19309 weeks
222-.05251 -.14444 (222*2π)/19309 weeks
223-.05509 -.02901 (223*2π)/19309 weeks
224-.0248 -.11825 (224*2π)/19309 weeks
225-.03601 -.04399 (225*2π)/19309 weeks
226-.03092 -.12328 (226*2π)/19309 weeks
227-.06596 -.00212 (227*2π)/19309 weeks
228.07219 -.09064 (228*2π)/19308 weeks
229-.04636 -.09847 (229*2π)/19308 weeks
230.02084 -.1096 (230*2π)/19308 weeks
231-.03609 -.05712 (231*2π)/19308 weeks
232.09522 -.13313 (232*2π)/19308 weeks
233-.05446 -.18561 (233*2π)/19308 weeks
234-.00118 -.08992 (234*2π)/19308 weeks
235-.01361 -.20671 (235*2π)/19308 weeks
236-.05953 -.09717 (236*2π)/19308 weeks
237-.05274 -.19755 (237*2π)/19308 weeks
238-.14777 -.01836 (238*2π)/19308 weeks
239.05638 -.09589 (239*2π)/19308 weeks
240-.07127 -.11021 (240*2π)/19308 weeks
241.04641 -.14285 (241*2π)/19308 weeks
242-.11291 -.13687 (242*2π)/19308 weeks
243.02112 -.07967 (243*2π)/19308 weeks
244-.09137 -.17529 (244*2π)/19308 weeks
245-.0437 -.03781 (245*2π)/19308 weeks
246-.03577 -.13331 (246*2π)/19308 weeks
247-.00693 -.07102 (247*2π)/19308 weeks
248-.04056 -.21158 (248*2π)/19308 weeks
249-.10883 -.06847 (249*2π)/19308 weeks
250-.01252 -.11252 (250*2π)/19308 weeks
251-.05744 -.08016 (251*2π)/19308 weeks
252.02626 -.14021 (252*2π)/19308 weeks
253-.12011 -.14042 (253*2π)/19308 weeks
254.00083 -.07493 (254*2π)/19308 weeks
255-.09628 -.20246 (255*2π)/19308 weeks
256-.1003 -.03205 (256*2π)/19308 weeks
257-.0195 -.15934 (257*2π)/19308 weeks
258-.16204 -.06198 (258*2π)/19307 weeks
259-.00491 -.03994 (259*2π)/19307 weeks
260-.0707 -.06584 (260*2π)/19307 weeks
261.03817 -.0729 (261*2π)/19307 weeks
262-.0681 -.13971 (262*2π)/19307 weeks
263-.02999 -.05882 (263*2π)/19307 weeks
264-.02218 -.12697 (264*2π)/19307 weeks
265-.07039 -.04952 (265*2π)/19307 weeks
266.06595 -.09887 (266*2π)/19307 weeks
267-.09587 -.19222 (267*2π)/19307 weeks
268-.03026 -.08088 (268*2π)/19307 weeks
269-.08772 -.16547 (269*2π)/19307 weeks
270-.0636 -.06726 (270*2π)/19307 weeks
271-.07264 -.11006 (271*2π)/19307 weeks
272-.04523 -.05325 (272*2π)/19307 weeks
273-.03037 -.12223 (273*2π)/19307 weeks
274-.06366 -.08738 (274*2π)/19307 weeks
275-.05008 -.12961 (275*2π)/19307 weeks
276-.1335 -.08362 (276*2π)/19307 weeks
277-.04714 -.02819 (277*2π)/19307 weeks
278-.05496 -.08967 (278*2π)/19307 weeks
279-.0244 -.04589 (279*2π)/19307 weeks
280-.03485 -.13846 (280*2π)/19307 weeks
281-.09828 -.03506 (281*2π)/19307 weeks
282-.00778 -.10388 (282*2π)/19307 weeks
283-.12217 -.03942 (283*2π)/19307 weeks
284.04741 -.07484 (284*2π)/19307 weeks
285-.11502 -.091 (285*2π)/19307 weeks
286.0345 -.01697 (286*2π)/19307 weeks
287-.03398 -.13348 (287*2π)/19307 weeks
288.0065 -.05618 (288*2π)/19307 weeks
289-.02524 -.20063 (289*2π)/19307 weeks
290-.12154 -.08779 (290*2π)/19307 weeks
291-.0489 -.09581 (291*2π)/19307 weeks
292-.08769 -.06756 (292*2π)/19307 weeks
293-.05108 -.10314 (293*2π)/19307 weeks
294-.08949 -.01064 (294*2π)/19307 weeks
295.02584 -.10018 (295*2π)/19307 weeks
296-.10485 -.08872 (296*2π)/19307 weeks
297.00911 -.04904 (297*2π)/19306 weeks
298-.08146 -.18048 (298*2π)/19306 weeks
299-.1081 .01608 (299*2π)/19306 weeks
300.03307 -.14967 (300*2π)/19306 weeks
301-.17 -.05845 (301*2π)/19306 weeks
302.01417 -.03643 (302*2π)/19306 weeks
303-.1127 -.09375 (303*2π)/19306 weeks
304-.0076 .01282 (304*2π)/19306 weeks
305-.0264 -.15065 (305*2π)/19306 weeks
306-.0942 -.04406 (306*2π)/19306 weeks
307-.08798 -.0823 (307*2π)/19306 weeks
308-.04793 .05006 (308*2π)/19306 weeks
309.03541 -.11835 (309*2π)/19306 weeks
310-.09375 -.05059 (310*2π)/19306 weeks
311.00305 -.04489 (311*2π)/19306 weeks
312-.06259 -.07777 (312*2π)/19306 weeks
313-.02097 -.02868 (313*2π)/19306 weeks
314-.01668 -.0875 (314*2π)/19306 weeks
315-.04121 -.05268 (315*2π)/19306 weeks
316-.03722 -.05657 (316*2π)/19306 weeks
317.00613 -.0329 (317*2π)/19306 weeks
318-.02009 -.12468 (318*2π)/19306 weeks
319-.03692 -.03111 (319*2π)/19306 weeks
320.00721 -.13235 (320*2π)/19306 weeks
321-.08932 -.04935 (321*2π)/19306 weeks
322.02971 -.06564 (322*2π)/19306 weeks
323-.03897 -.09081 (323*2π)/19306 weeks
324.0161 -.09685 (324*2π)/19306 weeks
325-.08718 -.11371 (325*2π)/19306 weeks
326-.00801 -.0451 (326*2π)/19306 weeks
327-.05185 -.12529 (327*2π)/19306 weeks
328-.01514 -.06913 (328*2π)/19306 weeks
329-.06286 -.16818 (329*2π)/19306 weeks
330-.09596 -.03312 (330*2π)/19306 weeks
331-.00884 -.12261 (331*2π)/19306 weeks
332-.12455 -.05458 (332*2π)/19306 weeks
333.00705 -.06833 (333*2π)/19306 weeks
334-.12739 -.08384 (334*2π)/19306 weeks
335-.00099 -.00881 (335*2π)/19306 weeks
336-.0754 -.10754 (336*2π)/19306 weeks
337-.01024 -.01738 (337*2π)/19306 weeks
338-.06678 -.14116 (338*2π)/19306 weeks
339-.06711 .02271 (339*2π)/19306 weeks
340.02369 -.11164 (340*2π)/19306 weeks
341-.09904 -.05588 (341*2π)/19306 weeks
342.03031 -.06046 (342*2π)/19306 weeks
343-.08985 -.10779 (343*2π)/19306 weeks
344.03733 -.04978 (344*2π)/19306 weeks
345-.10589 -.18016 (345*2π)/19306 weeks
346-.067 -.00463 (346*2π)/19306 weeks
347-.05675 -.13053 (347*2π)/19306 weeks
348-.08275 -.00294 (348*2π)/19306 weeks
349-.02454 -.12736 (349*2π)/19306 weeks
350-.14638 -.03306 (350*2π)/19306 weeks
351-.02476 -.036 (351*2π)/19305 weeks
352-.08069 -.04894 (352*2π)/19305 weeks
353-.04381 -.02232 (353*2π)/19305 weeks
354-.02551 -.02256 (354*2π)/19305 weeks
355-.02335 -.07589 (355*2π)/19305 weeks
356-.07662 -.03269 (356*2π)/19305 weeks
357.02472 -.03232 (357*2π)/19305 weeks
358-.06423 -.10767 (358*2π)/19305 weeks
359-.01112 .01839 (359*2π)/19305 weeks
360-.005 -.15629 (360*2π)/19305 weeks
361-.09059 .00019 (361*2π)/19305 weeks
362.03191 -.1186 (362*2π)/19305 weeks
363-.12404 -.04346 (363*2π)/19305 weeks
364.03847 -.05166 (364*2π)/19305 weeks
365-.10058 -.10344 (365*2π)/19305 weeks
366-.00252 -.02301 (366*2π)/19305 weeks
367-.08068 -.1097 (367*2π)/19305 weeks
368-.01375 .00399 (368*2π)/19305 weeks
369-.04942 -.11753 (369*2π)/19305 weeks
370-.01236 .00648 (370*2π)/19305 weeks
371.00004 -.15148