Back to list of Stocks    See Also: Seasonal Analysis of AAPLGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AAPL (Apple Inc.)


AAPL (Apple Inc.) appears to have interesting cyclic behaviour every 112 weeks (3.3986*sine), 190 weeks (3.1616*sine), and 119 weeks (2.7302*sine).

AAPL (Apple Inc.) has an average price of 18.22 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/12/1980 to 4/17/2017 for AAPL (Apple Inc.), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
018.21563   0 
125.00423 -17.34576 (1*2π)/18971,897 weeks
210.34169 -19.96361 (2*2π)/1897949 weeks
33.15137 -14.88165 (3*2π)/1897632 weeks
41.21468 -10.73323 (4*2π)/1897474 weeks
5-.13236 -8.16938 (5*2π)/1897379 weeks
6.63905 -5.75434 (6*2π)/1897316 weeks
71.08691 -6.13329 (7*2π)/1897271 weeks
8-.06633 -6.16217 (8*2π)/1897237 weeks
9-1.493 -5.35564 (9*2π)/1897211 weeks
10-1.79257 -3.16156 (10*2π)/1897190 weeks
11-1.06363 -1.90968 (11*2π)/1897172 weeks
12-.24439 -1.38933 (12*2π)/1897158 weeks
13.24193 -1.11756 (13*2π)/1897146 weeks
14.98227 -.55637 (14*2π)/1897136 weeks
152.47718 -1.24785 (15*2π)/1897126 weeks
162.36781 -2.73024 (16*2π)/1897119 weeks
171.27656 -3.39856 (17*2π)/1897112 weeks
18.27653 -2.7719 (18*2π)/1897105 weeks
19.42622 -2.14986 (19*2π)/1897100 weeks
20.45837 -2.13612 (20*2π)/189795 weeks
21.59961 -1.85785 (21*2π)/189790 weeks
22.74799 -1.89574 (22*2π)/189786 weeks
231.00007 -2.11313 (23*2π)/189782 weeks
24.71202 -2.75813 (24*2π)/189779 weeks
25-.04458 -2.7427 (25*2π)/189776 weeks
26-.60513 -2.31647 (26*2π)/189773 weeks
27-.67851 -1.52043 (27*2π)/189770 weeks
28-.22617 -1.04484 (28*2π)/189768 weeks
29.28099 -1.05569 (29*2π)/189765 weeks
30.41257 -1.3749 (30*2π)/189763 weeks
31.23383 -1.45034 (31*2π)/189761 weeks
32.30926 -1.50188 (32*2π)/189759 weeks
33.1751 -1.56851 (33*2π)/189757 weeks
34-.04893 -1.51332 (34*2π)/189756 weeks
35-.16834 -1.3421 (35*2π)/189754 weeks
36-.13182 -1.06415 (36*2π)/189753 weeks
37.03952 -.95272 (37*2π)/189751 weeks
38.25509 -1.09121 (38*2π)/189750 weeks
39.1857 -1.25247 (39*2π)/189749 weeks
40-.02466 -1.04639 (40*2π)/189747 weeks
41.27345 -1.04391 (41*2π)/189746 weeks
42.28126 -1.37155 (42*2π)/189745 weeks
43-.14251 -1.3703 (43*2π)/189744 weeks
44-.276 -1.02571 (44*2π)/189743 weeks
45-.02648 -.87328 (45*2π)/189742 weeks
46.00154 -1.01741 (46*2π)/189741 weeks
47-.17095 -.90718 (47*2π)/189740 weeks
48-.09906 -.72514 (48*2π)/189740 weeks
49.05495 -.67576 (49*2π)/189739 weeks
50.23268 -.74166 (50*2π)/189738 weeks
51.14154 -.86792 (51*2π)/189737 weeks
52.12028 -.82487 (52*2π)/189736 weeks
53.21319 -.82617 (53*2π)/189736 weeks
54.20905 -.91595 (54*2π)/189735 weeks
55.09923 -.9388 (55*2π)/189734 weeks
56.07649 -.82599 (56*2π)/189734 weeks
57.25543 -.88356 (57*2π)/189733 weeks
58.20239 -1.09809 (58*2π)/189733 weeks
59-.11328 -1.18428 (59*2π)/189732 weeks
60-.38059 -.89125 (60*2π)/189732 weeks
61-.18886 -.51288 (61*2π)/189731 weeks
62.07864 -.51672 (62*2π)/189731 weeks
63.19826 -.69988 (63*2π)/189730 weeks
64.16222 -.81732 (64*2π)/189730 weeks
65.14398 -.84197 (65*2π)/189729 weeks
66.01654 -.98243 (66*2π)/189729 weeks
67-.21638 -.90014 (67*2π)/189728 weeks
68-.25544 -.63218 (68*2π)/189728 weeks
69-.07084 -.45624 (69*2π)/189727 weeks
70.157 -.54334 (70*2π)/189727 weeks
71.15212 -.64852 (71*2π)/189727 weeks
72.17817 -.67552 (72*2π)/189726 weeks
73.18404 -.80075 (73*2π)/189726 weeks
74.06458 -.90436 (74*2π)/189726 weeks
75-.1323 -.80237 (75*2π)/189725 weeks
76-.0354 -.55261 (76*2π)/189725 weeks
77.21049 -.63312 (77*2π)/189725 weeks
78.24942 -.88518 (78*2π)/189724 weeks
79.03286 -1.05139 (79*2π)/189724 weeks
80-.15213 -1.00123 (80*2π)/189724 weeks
81-.2539 -.95531 (81*2π)/189723 weeks
82-.37422 -.8096 (82*2π)/189723 weeks
83-.38317 -.61317 (83*2π)/189723 weeks
84-.27831 -.55621 (84*2π)/189723 weeks
85-.13285 -.57412 (85*2π)/189722 weeks
86-.20484 -.66102 (86*2π)/189722 weeks
87-.25345 -.60109 (87*2π)/189722 weeks
88-.26795 -.55456 (88*2π)/189722 weeks
89-.25481 -.53224 (89*2π)/189721 weeks
90-.31344 -.55219 (90*2π)/189721 weeks
91-.35007 -.35778 (91*2π)/189721 weeks
92-.18307 -.26886 (92*2π)/189721 weeks
93-.07538 -.35213 (93*2π)/189720 weeks
94-.12149 -.45643 (94*2π)/189720 weeks
95-.18881 -.36578 (95*2π)/189720 weeks
96-.09684 -.31569 (96*2π)/189720 weeks
97-.10108 -.34424 (97*2π)/189720 weeks
98-.07736 -.27765 (98*2π)/189719 weeks
99.03607 -.22357 (99*2π)/189719 weeks
100.18576 -.30951 (100*2π)/189719 weeks
101.18815 -.50798 (101*2π)/189719 weeks
102.10453 -.59272 (102*2π)/189719 weeks
103-.02226 -.58148 (103*2π)/189718 weeks
104-.04527 -.50568 (104*2π)/189718 weeks
105.01203 -.54804 (105*2π)/189718 weeks
106-.06692 -.58463 (106*2π)/189718 weeks
107-.10775 -.53804 (107*2π)/189718 weeks
108-.0859 -.49059 (108*2π)/189718 weeks
109-.04841 -.56287 (109*2π)/189717 weeks
110-.18532 -.61906 (110*2π)/189717 weeks
111-.26228 -.52572 (111*2π)/189717 weeks
112-.25505 -.43122 (112*2π)/189717 weeks
113-.19047 -.41787 (113*2π)/189717 weeks
114-.25393 -.42509 (114*2π)/189717 weeks
115-.28314 -.31392 (115*2π)/189716 weeks
116-.19757 -.23157 (116*2π)/189716 weeks
117-.07354 -.22084 (117*2π)/189716 weeks
118-.02177 -.29995 (118*2π)/189716 weeks
119-.04768 -.35147 (119*2π)/189716 weeks
120-.06862 -.36696 (120*2π)/189716 weeks
121-.06135 -.3476 (121*2π)/189716 weeks
122-.06588 -.40946 (122*2π)/189716 weeks
123-.15579 -.42566 (123*2π)/189715 weeks
124-.2014 -.32463 (124*2π)/189715 weeks
125-.12736 -.24295 (125*2π)/189715 weeks
126-.07092 -.29077 (126*2π)/189715 weeks
127-.08801 -.29509 (127*2π)/189715 weeks
128-.05575 -.28327 (128*2π)/189715 weeks
129-.02269 -.32475 (129*2π)/189715 weeks
130-.08086 -.3694 (130*2π)/189715 weeks
131-.13954 -.28781 (131*2π)/189714 weeks
132-.08372 -.21768 (132*2π)/189714 weeks
133.01283 -.22393 (133*2π)/189714 weeks
134.07491 -.30146 (134*2π)/189714 weeks
135.03146 -.34806 (135*2π)/189714 weeks
136.01904 -.38027 (136*2π)/189714 weeks
137-.00808 -.39441 (137*2π)/189714 weeks
138-.01817 -.41689 (138*2π)/189714 weeks
139-.05951 -.44219 (139*2π)/189714 weeks
140-.09175 -.44651 (140*2π)/189714 weeks
141-.15764 -.4297 (141*2π)/189713 weeks
142-.20403 -.37256 (142*2π)/189713 weeks
143-.19465 -.32757 (143*2π)/189713 weeks
144-.16632 -.28634 (144*2π)/189713 weeks
145-.17673 -.27838 (145*2π)/189713 weeks
146-.15473 -.22874 (146*2π)/189713 weeks
147-.12598 -.18122 (147*2π)/189713 weeks
148-.04936 -.16328 (148*2π)/189713 weeks
149.05465 -.21115 (149*2π)/189713 weeks
150.07594 -.30668 (150*2π)/189713 weeks
151.04429 -.4125 (151*2π)/189713 weeks
152-.06415 -.47434 (152*2π)/189712 weeks
153-.19029 -.44681 (153*2π)/189712 weeks
154-.26719 -.33502 (154*2π)/189712 weeks
155-.20062 -.21735 (155*2π)/189712 weeks
156-.14985 -.22256 (156*2π)/189712 weeks
157-.13452 -.21532 (157*2π)/189712 weeks
158-.09788 -.19846 (158*2π)/189712 weeks
159-.04815 -.23646 (159*2π)/189712 weeks
160-.0908 -.30742 (160*2π)/189712 weeks
161-.19429 -.25041 (161*2π)/189712 weeks
162-.17901 -.13283 (162*2π)/189712 weeks
163-.04531 -.0636 (163*2π)/189712 weeks
164.07862 -.14983 (164*2π)/189712 weeks
165.06862 -.26329 (165*2π)/189711 weeks
166.03767 -.29089 (166*2π)/189711 weeks
167.01947 -.33778 (167*2π)/189711 weeks
168-.03091 -.37199 (168*2π)/189711 weeks
169-.11488 -.37211 (169*2π)/189711 weeks
170-.14306 -.29371 (170*2π)/189711 weeks
171-.10083 -.27986 (171*2π)/189711 weeks
172-.1178 -.29837 (172*2π)/189711 weeks
173-.16584 -.28241 (173*2π)/189711 weeks
174-.18855 -.2045 (174*2π)/189711 weeks
175-.09164 -.16968 (175*2π)/189711 weeks
176-.07828 -.21903 (176*2π)/189711 weeks
177-.08855 -.2198 (177*2π)/189711 weeks
178-.09936 -.21434 (178*2π)/189711 weeks
179-.07631 -.2038 (179*2π)/189711 weeks
180-.08483 -.23903 (180*2π)/189711 weeks
181-.09631 -.19351 (181*2π)/189710 weeks
182-.07056 -.19119 (182*2π)/189710 weeks
183-.04049 -.20519 (183*2π)/189710 weeks
184-.03998 -.24413 (184*2π)/189710 weeks
185-.0886 -.24635 (185*2π)/189710 weeks
186-.07679 -.23989 (186*2π)/189710 weeks
187-.09378 -.2376 (187*2π)/189710 weeks
188-.09415 -.22969 (188*2π)/189710 weeks
189-.12241 -.24289 (189*2π)/189710 weeks
190-.13085 -.22295 (190*2π)/189710 weeks
191-.18102 -.2039 (191*2π)/189710 weeks
192-.19003 -.10778 (192*2π)/189710 weeks
193-.11685 -.0439 (193*2π)/189710 weeks
194-.01214 -.04045 (194*2π)/189710 weeks
195.03591 -.12511 (195*2π)/189710 weeks
196.00115 -.16229 (196*2π)/189710 weeks
197.01528 -.16313 (197*2π)/189710 weeks
198.01717 -.18299 (198*2π)/189710 weeks
199-.00849 -.21182 (199*2π)/189710 weeks
200-.03776 -.1821 (200*2π)/18979 weeks
201.0054 -.14267 (201*2π)/18979 weeks
202.04378 -.17289 (202*2π)/18979 weeks
203.04149 -.20686 (203*2π)/18979 weeks
204.03007 -.22815 (204*2π)/18979 weeks
205.03521 -.21295 (205*2π)/18979 weeks
206.05463 -.2522 (206*2π)/18979 weeks
207.03725 -.28593 (207*2π)/18979 weeks
208.01337 -.2985 (208*2π)/18979 weeks
209-.01934 -.3057 (209*2π)/18979 weeks
210-.02431 -.30852 (210*2π)/18979 weeks
211-.06089 -.31064 (211*2π)/18979 weeks
212-.06584 -.2789 (212*2π)/18979 weeks
213-.06403 -.28943 (213*2π)/18979 weeks
214-.07468 -.28834 (214*2π)/18979 weeks
215-.10564 -.29271 (215*2π)/18979 weeks
216-.11396 -.25255 (216*2π)/18979 weeks
217-.10101 -.24859 (217*2π)/18979 weeks
218-.11044 -.23043 (218*2π)/18979 weeks
219-.08971 -.25079 (219*2π)/18979 weeks
220-.12208 -.23264 (220*2π)/18979 weeks
221-.10663 -.21437 (221*2π)/18979 weeks
222-.09521 -.22357 (222*2π)/18979 weeks
223-.08764 -.23802 (223*2π)/18979 weeks
224-.14494 -.23661 (224*2π)/18978 weeks
225-.12678 -.18401 (225*2π)/18978 weeks
226-.09931 -.18957 (226*2π)/18978 weeks
227-.10423 -.20975 (227*2π)/18978 weeks
228-.1336 -.19747 (228*2π)/18978 weeks
229-.11552 -.15135 (229*2π)/18978 weeks
230-.07869 -.16646 (230*2π)/18978 weeks
231-.08465 -.18823 (231*2π)/18978 weeks
232-.09055 -.19129 (232*2π)/18978 weeks
233-.10873 -.17619 (233*2π)/18978 weeks
234-.08561 -.17413 (234*2π)/18978 weeks
235-.10431 -.19196 (235*2π)/18978 weeks
236-.1138 -.14983 (236*2π)/18978 weeks
237-.0841 -.12227 (237*2π)/18978 weeks
238-.03248 -.14537 (238*2π)/18978 weeks
239-.04181 -.20228 (239*2π)/18978 weeks
240-.07858 -.2102 (240*2π)/18978 weeks
241-.11405 -.20084 (241*2π)/18978 weeks
242-.14482 -.15389 (242*2π)/18978 weeks
243-.09856 -.0901 (243*2π)/18978 weeks
244-.02689 -.10155 (244*2π)/18978 weeks
245-.01238 -.1666 (245*2π)/18978 weeks
246-.05359 -.17348 (246*2π)/18978 weeks
247-.02353 -.13783 (247*2π)/18978 weeks
248.01392 -.17901 (248*2π)/18978 weeks
249-.00554 -.23883 (249*2π)/18978 weeks
250-.06065 -.25222 (250*2π)/18978 weeks
251-.07273 -.22046 (251*2π)/18978 weeks
252-.06831 -.21635 (252*2π)/18978 weeks
253-.06996 -.23742 (253*2π)/18977 weeks
254-.11465 -.25857 (254*2π)/18977 weeks
255-.15708 -.21193 (255*2π)/18977 weeks
256-.14381 -.16946 (256*2π)/18977 weeks
257-.11472 -.15288 (257*2π)/18977 weeks
258-.09525 -.16436 (258*2π)/18977 weeks
259-.1125 -.17636 (259*2π)/18977 weeks
260-.11102 -.18301 (260*2π)/18977 weeks
261-.14984 -.18116 (261*2π)/18977 weeks
262-.16346 -.11644 (262*2π)/18977 weeks
263-.12031 -.06084 (263*2π)/18977 weeks
264-.03818 -.07273 (264*2π)/18977 weeks
265-.02344 -.14932 (265*2π)/18977 weeks
266-.05791 -.1672 (266*2π)/18977 weeks
267-.06772 -.15119 (267*2π)/18977 weeks
268-.05084 -.15088 (268*2π)/18977 weeks
269-.05501 -.17129 (269*2π)/18977 weeks
270-.06165 -.175 (270*2π)/18977 weeks
271-.06753 -.19306 (271*2π)/18977 weeks
272-.09 -.20543 (272*2π)/18977 weeks
273-.12586 -.18049 (273*2π)/18977 weeks
274-.12743 -.16012 (274*2π)/18977 weeks
275-.12825 -.14098 (275*2π)/18977 weeks
276-.11933 -.11422 (276*2π)/18977 weeks
277-.09918 -.10226 (277*2π)/18977 weeks
278-.06553 -.10145 (278*2π)/18977 weeks
279-.04915 -.12788 (279*2π)/18977 weeks
280-.06041 -.14764 (280*2π)/18977 weeks
281-.08818 -.14745 (281*2π)/18977 weeks
282-.08009 -.1129 (282*2π)/18977 weeks
283-.05708 -.12122 (283*2π)/18977 weeks
284-.05081 -.12811 (284*2π)/18977 weeks
285-.04365 -.13503 (285*2π)/18977 weeks
286-.03427 -.14193 (286*2π)/18977 weeks
287-.03088 -.18093 (287*2π)/18977 weeks
288-.06867 -.18693 (288*2π)/18977 weeks
289-.06881 -.16716 (289*2π)/18977 weeks
290-.06453 -.17171 (290*2π)/18977 weeks
291-.08053 -.19643 (291*2π)/18977 weeks
292-.11339 -.18214 (292*2π)/18976 weeks
293-.11519 -.14919 (293*2π)/18976 weeks
294-.10536 -.13894 (294*2π)/18976 weeks
295-.08427 -.12423 (295*2π)/18976 weeks
296-.06784 -.14728 (296*2π)/18976 weeks
297-.07407 -.17121 (297*2π)/18976 weeks
298-.11158 -.18764 (298*2π)/18976 weeks
299-.134 -.15352 (299*2π)/18976 weeks
300-.12648 -.13088 (300*2π)/18976 weeks
301-.11548 -.1183 (301*2π)/18976 weeks
302-.10671 -.12514 (302*2π)/18976 weeks
303-.11724 -.12002 (303*2π)/18976 weeks
304-.10157 -.1156 (304*2π)/18976 weeks
305-.1068 -.1246 (305*2π)/18976 weeks
306-.13083 -.11177 (306*2π)/18976 weeks
307-.13655 -.07682 (307*2π)/18976 weeks
308-.10966 -.0499 (308*2π)/18976 weeks
309-.07002 -.04954 (309*2π)/18976 weeks
310-.05589 -.0552 (310*2π)/18976 weeks
311-.03952 -.05164 (311*2π)/18976 weeks
312-.00443 -.0713 (312*2π)/18976 weeks
313.01048 -.1107 (313*2π)/18976 weeks
314-.01352 -.14695 (314*2π)/18976 weeks
315-.03664 -.14486 (315*2π)/18976 weeks
316-.03819 -.14014 (316*2π)/18976 weeks
317-.03542 -.14359 (317*2π)/18976 weeks
318-.04299 -.16018 (318*2π)/18976 weeks
319-.05519 -.16192 (319*2π)/18976 weeks
320-.06107 -.16179 (320*2π)/18976 weeks
321-.05949 -.15287 (321*2π)/18976 weeks
322-.05938 -.17635 (322*2π)/18976 weeks
323-.09557 -.18638 (323*2π)/18976 weeks
324-.12047 -.16725 (324*2π)/18976 weeks
325-.12818 -.14192 (325*2π)/18976 weeks
326-.12973 -.11488 (326*2π)/18976 weeks
327-.10643 -.07508 (327*2π)/18976 weeks
328-.04202 -.08611 (328*2π)/18976 weeks
329-.04439 -.14923 (329*2π)/18976 weeks
330-.07819 -.16844 (330*2π)/18976 weeks
331-.09832 -.15957 (331*2π)/18976 weeks
332-.12077 -.16203 (332*2π)/18976 weeks
333-.15718 -.13743 (333*2π)/18976 weeks
334-.15162 -.08229 (334*2π)/18976 weeks
335-.11995 -.07113 (335*2π)/18976 weeks
336-.10008 -.06393 (336*2π)/18976 weeks
337-.07949 -.05925 (337*2π)/18976 weeks
338-.05053 -.06969 (338*2π)/18976 weeks
339-.05066 -.11096 (339*2π)/18976 weeks
340-.08499 -.11498 (340*2π)/18976 weeks
341-.08041 -.09683 (341*2π)/18976 weeks
342-.0766 -.0939 (342*2π)/18976 weeks
343-.08963 -.09518 (343*2π)/18976 weeks
344-.0919 -.0776 (344*2π)/18976 weeks
345-.06006 -.05672 (345*2π)/18975 weeks
346-.02931 -.08246 (346*2π)/18975 weeks
347-.03448 -.11687 (347*2π)/18975 weeks
348-.06013 -.12716 (348*2π)/18975 weeks
349-.08758 -.12377 (349*2π)/18975 weeks
350-.10097 -.09668 (350*2π)/18975 weeks
351-.0791 -.07175 (351*2π)/18975 weeks
352-.0638 -.07226 (352*2π)/18975 weeks
353-.05619 -.06518 (353*2π)/18975 weeks
354-.03061 -.0586 (354*2π)/18975 weeks
355-.00014 -.07979 (355*2π)/18975 weeks
356.01502 -.13117 (356*2π)/18975 weeks
357-.02087 -.17432 (357*2π)/18975 weeks
358-.07422 -.17923 (358*2π)/18975 weeks
359-.11719 -.13622 (359*2π)/18975 weeks
360-.11445 -.09175 (360*2π)/18975 weeks
361-.09218 -.05794 (361*2π)/18975 weeks
362-.03562 -.03207 (362*2π)/18975 weeks
363.03676 -.05897 (363*2π)/18975 weeks
364.06599 -.16582 (364*2π)/18975 weeks
365-.01773 -.2401 (365*2π)/18975 weeks
366-.10223 -.20882 (366*2π)/18975 weeks
367-.11691 -.16444 (367*2π)/18975 weeks
368-.10658 -.15605 (368*2π)/18975 weeks
369-.14168 -.14378 (369*2π)/18975 weeks
370-.13444 -.08908 (370*2π)/18975 weeks
371-.0928 -.07285 (371*2π)/18975 weeks
372-.06342 -.10371 (372*2π)/18975 weeks
373-.08093 -.14001 (373*2π)/18975 weeks
374-.11973 -.11608 (374*2π)/18975 weeks
375-.10988 -.08031 (375*2π)/18975 weeks
376-.08045 -.08159 (376*2π)/18975 weeks
377-.07318 -.09452 (377*2π)/18975 weeks
378-.07852 -.09634 (378*2π)/18975 weeks
379-.06747 -.09409 (379*2π)/18975 weeks
380-.06672 -.11539 (380*2π)/18975 weeks
381-.08344 -.1183 (381*2π)/18975 weeks
382-.09349 -.11764 (382*2π)/18975 weeks
383-.1081 -.10568 (383*2π)/18975 weeks
384-.11273 -.08908 (384*2π)/18975 weeks
385-.10451 -.05899 (385*2π)/18975 weeks
386-.07178 -.04977 (386*2π)/18975 weeks
387-.04639 -.06593 (387*2π)/18975 weeks
388-.03233 -.09438 (388*2π)/18975 weeks
389-.04889 -.1183 (389*2π)/18975 weeks
390-.06974 -.13022 (390*2π)/18975 weeks
391-.09662 -.12133 (391*2π)/18975 weeks
392-.09985 -.09481 (392*2π)/18975 weeks
393-.07905 -.0831 (393*2π)/18975 weeks
394-.06663 -.09611 (394*2π)/18975 weeks
395-.07805 -.11644 (395*2π)/18975 weeks
396-.09361 -.10793 (396*2π)/18975 weeks
397-.1017 -.10346 (397*2π)/18975 weeks
398-.10349 -.08948 (398*2π)/18975 weeks
399-.10566 -.09242 (399*2π)/18975 weeks
400-.1204 -.06451 (400*2π)/18975 weeks
401-.09406 -.0434 (401*2π)/18975 weeks
402-.06948 -.04738 (402*2π)/18975 weeks
403-.05825 -.06751 (403*2π)/18975 weeks
404-.07464 -.07233 (404*2π)/18975 weeks
405-.06312 -.06818 (405*2π)/18975 weeks
406-.06723 -.07253 (406*2π)/18975 weeks
407-.07263 -.07414 (407*2π)/18975 weeks
408-.07353 -.05596 (408*2π)/18975 weeks
409-.04336 -.04499 (409*2π)/18975 weeks
410-.02551 -.0716 (410*2π)/18975 weeks
411-.03429 -.09221 (411*2π)/18975 weeks
412-.04192 -.09581 (412*2π)/18975 weeks
413-.04107 -.10016 (413*2π)/18975 weeks
414-.0534 -.11257 (414*2π)/18975 weeks
415-.06405 -.10563 (415*2π)/18975 weeks
416-.06623 -.09818 (416*2π)/18975 weeks
417-.06244 -.10129 (417*2π)/18975 weeks
418-.06726 -.10275 (418*2π)/18975 weeks
419-.07435 -.10104 (419*2π)/18975 weeks
420-.07104 -.08689 (420*2π)/18975 weeks
421-.05882 -.09696 (421*2π)/18975 weeks
422-.06556 -.10441 (422*2π)/18974 weeks
423-.07288 -.10437 (423*2π)/18974 weeks
424-.07226 -.10019 (424*2π)/18974 weeks
425-.07212 -.12012 (425*2π)/18974 weeks
426-.10395 -.12143 (426*2π)/18974 weeks
427-.12795 -.08814 (427*2π)/18974 weeks
428-.11055 -.05281 (428*2π)/18974 weeks
429-.07848 -.0461 (429*2π)/18974 weeks
430-.06948 -.06143 (430*2π)/18974 weeks
431-.06993 -.05871 (431*2π)/18974 weeks
432-.05353 -.05569 (432*2π)/18974 weeks
433-.04422 -.06898 (433*2π)/18974 weeks
434-.04789 -.06961 (434*2π)/18974 weeks
435-.03835 -.06494 (435*2π)/18974 weeks
436-.012 -.08349 (436*2π)/18974 weeks
437-.00783 -.11646 (437*2π)/18974 weeks
438-.03739 -.14428 (438*2π)/18974 weeks
439-.05574 -.14707 (439*2π)/18974 weeks
440-.07524 -.16035 (440*2π)/18974 weeks
441-.1057 -.15355 (441*2π)/18974 weeks
442-.13738 -.13214 (442*2π)/18974 weeks
443-.13751 -.09365 (443*2π)/18974 weeks
444-.11934 -.07821 (444*2π)/18974 weeks
445-.10973 -.07085 (445*2π)/18974 weeks
446-.1042 -.07454 (446*2π)/18974 weeks
447-.10045 -.06328 (447*2π)/18974 weeks
448-.09292 -.06612 (448*2π)/18974 weeks
449-.08719 -.06025 (449*2π)/18974 weeks
450-.07463 -.06788 (450*2π)/18974 weeks
451-.0753 -.08294 (451*2π)/18974 weeks
452-.08867 -.09059 (452*2π)/18974 weeks
453-.10908 -.07704 (453*2π)/18974 weeks
454-.09731 -.06423 (454*2π)/18974 weeks
455-.0936 -.05934 (455*2π)/18974 weeks
456-.08491 -.06744 (456*2π)/18974 weeks
457-.10251 -.07125 (457*2π)/18974 weeks
458-.10806 -.04161 (458*2π)/18974 weeks
459-.08188 -.02045 (459*2π)/18974 weeks
460-.04869 -.04088 (460*2π)/18974 weeks
461-.05773 -.07363 (461*2π)/18974 weeks
462-.07847 -.06522 (462*2π)/18974 weeks
463-.07982 -.05591 (463*2π)/18974 weeks
464-.07976 -.04677 (464*2π)/18974 weeks
465-.06959 -.02915 (465*2π)/18974 weeks
466-.0315 -.02681 (466*2π)/18974 weeks
467-.00275 -.07101 (467*2π)/18974 weeks
468-.03017 -.10986 (468*2π)/18974 weeks
469-.05987 -.12158 (469*2π)/18974 weeks
470-.09803 -.11284 (470*2π)/18974 weeks
471-.11517 -.08169 (471*2π)/18974 weeks
472-.0941 -.04268 (472*2π)/18974 weeks
473-.05449 -.05497 (473*2π)/18974 weeks
474-.07001 -.09346 (474*2π)/18974 weeks
475-.09804 -.08882 (475*2π)/18974 weeks
476-.10975 -.05205 (476*2π)/18974 weeks
477-.08466 -.03697 (477*2π)/18974 weeks
478-.06594 -.04948 (478*2π)/18974 weeks
479-.07109 -.06426 (479*2π)/18974 weeks
480-.08855 -.06597 (480*2π)/18974 weeks
481-.09823 -.04497 (481*2π)/18974 weeks
482-.09036 -.0259 (482*2π)/18974 weeks
483-.07275 -.01088 (483*2π)/18974 weeks
484-.04727 -.01082 (484*2π)/18974 weeks
485-.02898 -.02427 (485*2π)/18974 weeks
486-.01422 -.04148 (486*2π)/18974 weeks
487-.01954 -.0632 (487*2π)/18974 weeks
488-.03618 -.0742 (488*2π)/18974 weeks
489-.04579