Back to list of Stocks    See Also: Seasonal Analysis of AAMCGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AAMC (Altisource Asset Management Cor)


AAMC (Altisource Asset Management Cor) appears to have interesting cyclic behaviour every 12 weeks (25.3907*sine), 11 weeks (19.7677*cosine), and 9 weeks (14.6409*cosine).

AAMC (Altisource Asset Management Cor) has an average price of 304.27 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/13/2012 to 3/20/2017 for AAMC (Altisource Asset Management Cor), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0304.2671   0 
1-153.3659 388.8003 (1*2π)/224224 weeks
2-128.9596 -118.4585 (2*2π)/224112 weeks
354.73375 -48.45856 (3*2π)/22475 weeks
420.11619 24.05996 (4*2π)/22456 weeks
52.30196 18.01923 (5*2π)/22445 weeks
6-32.26218 -7.88826 (6*2π)/22437 weeks
710.02199 -7.34891 (7*2π)/22432 weeks
8-7.72936 -15.32094 (8*2π)/22428 weeks
924.31738 5.78946 (9*2π)/22425 weeks
10-13.45909 16.22479 (10*2π)/22422 weeks
11-3.34606 -13.72079 (11*2π)/22420 weeks
128.77548 6.83596 (12*2π)/22419 weeks
13-8.22172 10.61434 (13*2π)/22417 weeks
14-12.40024 -8.56877 (14*2π)/22416 weeks
154.35699 4.66554 (15*2π)/22415 weeks
16-8.10434 -8.98723 (16*2π)/22414 weeks
1711.21895 8.58234 (17*2π)/22413 weeks
18-18.88979 8.1315 (18*2π)/22412 weeks
19-3.68685 -25.39074 (19*2π)/22412 weeks
2019.76769 3.17096 (20*2π)/22411 weeks
21-1.70073 8.60324 (21*2π)/22411 weeks
22-4.30814 -3.71663 (22*2π)/22410 weeks
238.66572 4.29412 (23*2π)/22410 weeks
24-11.71099 11.78138 (24*2π)/2249 weeks
25-14.64088 -11.50212 (25*2π)/2249 weeks
2611.76616 -8.6652 (26*2π)/2249 weeks
273.02658 10.60256 (27*2π)/2248 weeks
28-9.05661 1.83136 (28*2π)/2248 weeks
29-1.02234 -6.0556 (29*2π)/2248 weeks
30-.74854 -1.49417 (30*2π)/2247 weeks
314.6428 -3.06021 (31*2π)/2247 weeks
323.87067 1.61861 (32*2π)/2247 weeks
33-3.39333 5.71812 (33*2π)/2247 weeks
34-1.08411 -7.22107 (34*2π)/2247 weeks
355.47103 7.60113 (35*2π)/2246 weeks
36-10.30623 2.50163 (36*2π)/2246 weeks
371.87181 -8.40825 (37*2π)/2246 weeks
381.74519 5.41192 (38*2π)/2246 weeks
39-4.16061 -2.78267 (39*2π)/2246 weeks
405.4704 -1.25538 (40*2π)/2246 weeks
41-2.43013 8.58905 (41*2π)/2245 weeks
42-7.21898 -6.6692 (42*2π)/2245 weeks
438.78547 -4.40636 (43*2π)/2245 weeks
442.68362 9.76687 (44*2π)/2245 weeks
45-6.78947 2.15955 (45*2π)/2245 weeks
46-6.00205 -3.38577 (46*2π)/2245 weeks
474.17396 -8.98376 (47*2π)/2245 weeks
487.59164 4.01763 (48*2π)/2245 weeks
49-3.42149 5.83658 (49*2π)/2245 weeks
50-4.14797 -2.10805 (50*2π)/2244 weeks
511.78516 -2.37534 (51*2π)/2244 weeks
52-1.22821 4.30354 (52*2π)/2244 weeks
53-1.72385 -5.13696 (53*2π)/2244 weeks
544.0167 3.45258 (54*2π)/2244 weeks
55-1.45619 1.98739 (55*2π)/2244 weeks
56-1.59688 .45625 (56*2π)/2244 weeks
57.473 -.14584 (57*2π)/2244 weeks
58-1.62126 .35189 (58*2π)/2244 weeks
592.88255 -5.49004 (59*2π)/2244 weeks
605.12629 7.36805 (60*2π)/2244 weeks
61-6.35792 2.40504 (61*2π)/2244 weeks
62-1.08174 -3.96988 (62*2π)/2244 weeks
633.48057 .37435 (63*2π)/2244 weeks
64-2.78255 .64512 (64*2π)/2244 weeks
653.68396 -1.40889 (65*2π)/2243 weeks
66-.29482 4.84855 (66*2π)/2243 weeks
67-5.50836 -.32502 (67*2π)/2243 weeks
681.55097 -4.46017 (68*2π)/2243 weeks
69.55921 .13782 (69*2π)/2243 weeks
702.53832 .63737 (70*2π)/2243 weeks
71-2.41289 4.29036 (71*2π)/2243 weeks
72-3.47366 -3.35529 (72*2π)/2243 weeks
73.69832 -.52978 (73*2π)/2243 weeks
742.04719 -1.95088 (74*2π)/2243 weeks
751.9739 4.34198 (75*2π)/2243 weeks
76-3.88685 2.76338 (76*2π)/2243 weeks
77-3.5076 -3.39503 (77*2π)/2243 weeks
782.09479 -1.2345 (78*2π)/2243 weeks
79-.18444 1.68233 (79*2π)/2243 weeks
80-3.28466 -.40648 (80*2π)/2243 weeks
81.48327 -2.81683 (81*2π)/2243 weeks
821.6313 .42434 (82*2π)/2243 weeks
83-.68631 1.22462 (83*2π)/2243 weeks
84.2575 -.19365 (84*2π)/2243 weeks
85-.33682 .5238 (85*2π)/2243 weeks
86.01227 .61574 (86*2π)/2243 weeks
87-.20642 -.48223 (87*2π)/2243 weeks
881.32087 2.85436 (88*2π)/2243 weeks
89-6.00603 .96976 (89*2π)/2243 weeks
90.22746 -5.92616 (90*2π)/2242 weeks
913.00486 1.4438 (91*2π)/2242 weeks
92-2.37853 2.44191 (92*2π)/2242 weeks
93-1.95192 -3.07693 (93*2π)/2242 weeks
941.32437 -.11207 (94*2π)/2242 weeks
95.34328 -1.77773 (95*2π)/2242 weeks
963.40353 4.22265 (96*2π)/2242 weeks
97-6.17171 2.85592 (97*2π)/2242 weeks
98-.68338 -4.07828 (98*2π)/2242 weeks
991.87964 .42126 (99*2π)/2242 weeks
100-.22857 3.00141 (100*2π)/2242 weeks
101-5.52255 -1.12434 (101*2π)/2242 weeks
1023.47296 -3.5847 (102*2π)/2242 weeks
103-.78044 3.77841 (103*2π)/2242 weeks
104-1.44227 -2.89328 (104*2π)/2242 weeks
1052.87637 .64343 (105*2π)/2242 weeks
106-.27726 2.43871 (106*2π)/2242 weeks
107-2.35263 .78273 (107*2π)/2242 weeks
108-.169 -1.80133 (108*2π)/2242 weeks
1092.49828 .36905 (109*2π)/2242 weeks
110-1.05253 3.19208 (110*2π)/2242 weeks
111-1.51014 .00329 (111*2π)/2242 weeks
112-1.12652   (112*2π)/2242 weeks
113-1.51014 -.00329 (113*2π)/2242 weeks
114-1.05253 -3.19208 (114*2π)/2242 weeks
1152.49828 -.36905 (115*2π)/2242 weeks
116-.169 1.80133 (116*2π)/2242 weeks
117-2.35263 -.78273 (117*2π)/2242 weeks
118-.27726 -2.43871 (118*2π)/2242 weeks
1192.87637 -.64343 (119*2π)/2242 weeks
120-1.44227 2.89328 (120*2π)/2242 weeks
121-.78044 -3.77841 (121*2π)/2242 weeks
1223.47296 3.5847 (122*2π)/2242 weeks
123-5.52255 1.12434 (123*2π)/2242 weeks
124-.22857 -3.00141 (124*2π)/2242 weeks
1251.87964 -.42126 (125*2π)/2242 weeks
126-.68338 4.07828 (126*2π)/2242 weeks
127-6.17171 -2.85592 (127*2π)/2242 weeks
1283.40353 -4.22265 (128*2π)/2242 weeks
129.34328 1.77773 (129*2π)/2242 weeks
1301.32437 .11207 (130*2π)/2242 weeks
131-1.95192 3.07693 (131*2π)/2242 weeks
132-2.37853 -2.44191 (132*2π)/2242 weeks
1333.00486 -1.4438 (133*2π)/2242 weeks
134.22746 5.92616 (134*2π)/2242 weeks
135-6.00603 -.96976 (135*2π)/2242 weeks
1361.32087 -2.85436 (136*2π)/2242 weeks
137-.20642 .48223 (137*2π)/2242 weeks
138.01227 -.61574 (138*2π)/2242 weeks
139-.33682 -.5238 (139*2π)/2242 weeks
140.2575 .19365 (140*2π)/2242 weeks
141-.68631 -1.22462 (141*2π)/2242 weeks
1421.6313 -.42434 (142*2π)/2242 weeks
143.48327 2.81683 (143*2π)/2242 weeks
144-3.28466 .40648 (144*2π)/2242 weeks
145-.18444 -1.68233 (145*2π)/2242 weeks
1462.09479 1.2345 (146*2π)/2242 weeks
147-3.5076 3.39503 (147*2π)/2242 weeks
148-3.88685 -2.76338 (148*2π)/2242 weeks
1491.9739 -4.34198 (149*2π)/2242 weeks
1502.04719 1.95088 (150*2π)/2241 weeks
151.69832 .52978 (151*2π)/2241 weeks
152-3.47366 3.35529 (152*2π)/2241 weeks
153-2.41289 -4.29036 (153*2π)/2241 weeks
1542.53832 -.63737 (154*2π)/2241 weeks
155.55921 -.13782 (155*2π)/2241 weeks
1561.55097 4.46017 (156*2π)/2241 weeks
157-5.50836 .32502 (157*2π)/2241 weeks
158-.29482 -4.84855 (158*2π)/2241 weeks
1593.68396 1.40889 (159*2π)/2241 weeks
160-2.78255 -.64512 (160*2π)/2241 weeks
1613.48057 -.37435 (161*2π)/2241 weeks
162-1.08174 3.96988 (162*2π)/2241 weeks
163-6.35792 -2.40504 (163*2π)/2241 weeks
1645.12629 -7.36805 (164*2π)/2241 weeks
1652.88255 5.49004 (165*2π)/2241 weeks
166-1.62126 -.35189 (166*2π)/2241 weeks
167.473 .14584 (167*2π)/2241 weeks
168-1.59688 -.45625 (168*2π)/2241 weeks
169-1.45619 -1.98739 (169*2π)/2241 weeks
1704.0167 -3.45258 (170*2π)/2241 weeks
171-1.72385 5.13696 (171*2π)/2241 weeks
172-1.22821 -4.30354 (172*2π)/2241 weeks
1731.78516 2.37534 (173*2π)/2241 weeks
174-4.14797 2.10805 (174*2π)/2241 weeks
175-3.42149 -5.83658 (175*2π)/2241 weeks
1767.59164 -4.01763 (176*2π)/2241 weeks
1774.17396 8.98376 (177*2π)/2241 weeks
178-6.00205 3.38577 (178*2π)/2241 weeks
179-6.78947 -2.15955 (179*2π)/2241 weeks
1802.68362 -9.76687 (180*2π)/2241 weeks
1818.78547 4.40636 (181*2π)/2241 weeks
182-7.21898 6.6692 (182*2π)/2241 weeks
183-2.43013 -8.58905 (183*2π)/2241 weeks
1845.4704 1.25538 (184*2π)/2241 weeks
185-4.16061 2.78267 (185*2π)/2241 weeks
1861.74519 -5.41192 (186*2π)/2241 weeks
1871.87181 8.40825 (187*2π)/2241 weeks
188-10.30623 -2.50163 (188*2π)/2241 weeks
1895.47103 -7.60113 (189*2π)/2241 weeks
190-1.08411 7.22107 (190*2π)/2241 weeks
191-3.39333 -5.71812 (191*2π)/2241 weeks
1923.87067 -1.61861 (192*2π)/2241 weeks
1934.6428 3.06021 (193*2π)/2241 weeks
194-.74854 1.49417 (194*2π)/2241 weeks
195-1.02234 6.0556 (195*2π)/2241 weeks
196-9.05661 -1.83136 (196*2π)/2241 weeks
1973.02658 -10.60256 (197*2π)/2241 weeks
19811.76616 8.6652 (198*2π)/2241 weeks
199-14.64088 11.50212 (199*2π)/2241 weeks
200-11.71099 -11.78138 (200*2π)/2241 weeks
2018.66572 -4.29412 (201*2π)/2241 weeks
202-4.30814 3.71663 (202*2π)/2241 weeks
203-1.70073 -8.60324 (203*2π)/2241 weeks
20419.76769 -3.17096 (204*2π)/2241 weeks
205-3.68685 25.39074 (205*2π)/2241 weeks
206-18.88979 -8.1315 (206*2π)/2241 weeks
20711.21895 -8.58234 (207*2π)/2241 weeks
208-8.10434 8.98723 (208*2π)/2241 weeks
2094.35699 -4.66554 (209*2π)/2241 weeks
210-12.40024 8.56877 (210*2π)/2241 weeks
211-8.22172 -10.61434 (211*2π)/2241 weeks
2128.77548 -6.83596 (212*2π)/2241 weeks
213-3.34606 13.72079 (213*2π)/2241 weeks
214-13.45909 -16.22479 (214*2π)/2241 weeks
21524.31738 -5.78946 (215*2π)/2241 weeks
216-7.72936 15.32094 (216*2π)/2241 weeks
21710.02199 7.34891 (217*2π)/2241 weeks
218-32.26218 7.88826 (218*2π)/2241 weeks
2192.30196 -18.01923 (219*2π)/2241 weeks
22020.11619 -24.05996 (220*2π)/2241 weeks
22154.73375 48.45856 (221*2π)/2241 weeks
222-128.9596 118.4585 (222*2π)/2241 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.