Back to list of Stocks    See Also: Seasonal Analysis of AAMCGenetic Algorithms Stock Portfolio Generator, and Fourier Calculator

Fourier Analysis of AAMC (Altisource Asset Management Cor)


AAMC (Altisource Asset Management Cor) appears to have interesting cyclic behaviour every 12 weeks (24.3847*cosine), 12 weeks (21.9551*sine), and 9 weeks (18.0372*cosine).

AAMC (Altisource Asset Management Cor) has an average price of 322.64 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 12/13/2012 to 11/28/2016 for AAMC (Altisource Asset Management Cor), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
0322.6366   0 
1-222.1382 372.3391 (1*2π)/208208 weeks
2-89.54057 -133.7327 (2*2π)/208104 weeks
359.4011 -18.5715 (3*2π)/20869 weeks
45.17269 26.04525 (4*2π)/20852 weeks
5-14.00919 29.51977 (5*2π)/20842 weeks
6-8.77725 -24.84636 (6*2π)/20835 weeks
7-5.50123 3.97125 (7*2π)/20830 weeks
822.36707 -13.26571 (8*2π)/20826 weeks
9-1.2154 25.74816 (9*2π)/20823 weeks
10-11.55026 -10.70274 (10*2π)/20821 weeks
1111.9291 4.91413 (11*2π)/20819 weeks
12-6.79511 12.92007 (12*2π)/20817 weeks
13-12.54834 -8.59837 (13*2π)/20816 weeks
143.50399 7.08654 (14*2π)/20815 weeks
15-3.39213 -12.28829 (15*2π)/20814 weeks
165.79491 15.91355 (16*2π)/20813 weeks
17-24.38465 -3.22703 (17*2π)/20812 weeks
1814.46792 -21.95507 (18*2π)/20812 weeks
198.41998 13.45611 (19*2π)/20811 weeks
20-6.33471 4.30389 (20*2π)/20810 weeks
216.77459 -2.63901 (21*2π)/20810 weeks
22-3.80889 16.67528 (22*2π)/2089 weeks
23-18.03724 -5.43759 (23*2π)/2089 weeks
2410.64814 -13.18208 (24*2π)/2089 weeks
255.45218 11.13739 (25*2π)/2088 weeks
26-9.36436 2.09381 (26*2π)/2088 weeks
27.0229 -5.99782 (27*2π)/2088 weeks
28-1.02889 -2.36063 (28*2π)/2087 weeks
295.59359 -.8217 (29*2π)/2087 weeks
304.25665 4.23279 (30*2π)/2087 weeks
31-7.00654 1.59942 (31*2π)/2087 weeks
328.32723 -3.26773 (32*2π)/2087 weeks
33-4.73414 9.96033 (33*2π)/2086 weeks
34-5.78643 -8.57374 (34*2π)/2086 weeks
356.49879 2.74046 (35*2π)/2086 weeks
36-5.20493 -.28501 (36*2π)/2086 weeks
375.07832 -3.13943 (37*2π)/2086 weeks
38-.91316 9.19537 (38*2π)/2085 weeks
39-7.66338 -7.28102 (39*2π)/2085 weeks
4010.12077 -3.45117 (40*2π)/2085 weeks
41.03863 10.69213 (41*2π)/2085 weeks
42-6.84608 .6084 (42*2π)/2085 weeks
43-5.48002 -6.66537 (43*2π)/2085 weeks
449.25376 -4.67361 (44*2π)/2085 weeks
453.02313 8.20974 (45*2π)/2085 weeks
46-5.62421 1.54496 (46*2π)/2085 weeks
47-.12438 -3.46884 (47*2π)/2084 weeks
482.50766 3.40864 (48*2π)/2084 weeks
49-4.28535 -3.61482 (49*2π)/2084 weeks
505.79947 1.76353 (50*2π)/2084 weeks
51-1.43089 2.07455 (51*2π)/2084 weeks
52-1.70096 .19846 (52*2π)/2084 weeks
53.47717 -.16628 (53*2π)/2084 weeks
54-2.36129 -.47391 (54*2π)/2084 weeks
556.42717 -4.47317 (55*2π)/2084 weeks
56.14573 9.29883 (56*2π)/2084 weeks
57-5.85711 -1.7225 (57*2π)/2084 weeks
581.92995 -3.34021 (58*2π)/2084 weeks
59.15843 3.4854 (59*2π)/2084 weeks
60.53767 -3.38905 (60*2π)/2083 weeks
612.23465 4.65956 (61*2π)/2083 weeks
62-5.52373 1.94315 (62*2π)/2083 weeks
63.13592 -5.29815 (63*2π)/2083 weeks
64.89285 .55616 (64*2π)/2083 weeks
652.83984 .9118 (65*2π)/2083 weeks
66-3.15056 4.50977 (66*2π)/2083 weeks
67-2.15685 -4.02168 (67*2π)/2083 weeks
68.0637 -.43987 (68*2π)/2083 weeks
693.90215 -.42102 (69*2π)/2083 weeks
70-.91234 5.30706 (70*2π)/2083 weeks
71-5.34892 .4604 (71*2π)/2083 weeks
72.63216 -3.76135 (72*2π)/2083 weeks
731.13977 1.48872 (73*2π)/2083 weeks
74-2.69939 1.31343 (74*2π)/2083 weeks
75-.46826 -3.19273 (75*2π)/2083 weeks
762.13282 .07489 (76*2π)/2083 weeks
77-.37711 1.50665 (77*2π)/2083 weeks
78.38936 -.17157 (78*2π)/2083 weeks
79-.31238 .53163 (79*2π)/2083 weeks
80-.13511 .86192 (80*2π)/2083 weeks
81.60033 -.43269 (81*2π)/2083 weeks
82-.6566 4.74943 (82*2π)/2083 weeks
83-5.93585 -3.12283 (83*2π)/2083 weeks
844.2926 -2.79953 (84*2π)/2082 weeks
85.50592 3.40509 (85*2π)/2082 weeks
86-3.66332 -1.10301 (86*2π)/2082 weeks
871.99919 -1.57297 (87*2π)/2082 weeks
88-.17205 -.96983 (88*2π)/2082 weeks
894.76449 2.91492 (89*2π)/2082 weeks
90-5.88672 3.91665 (90*2π)/2082 weeks
91-.45696 -4.47286 (91*2π)/2082 weeks
922.16753 .63615 (92*2π)/2082 weeks
93-.83624 3.46727 (93*2π)/2082 weeks
94-4.70131 -3.93109 (94*2π)/2082 weeks
955.06062 -.33083 (95*2π)/2082 weeks
96-3.43292 1.33618 (96*2π)/2082 weeks
972.09374 -2.81521 (97*2π)/2082 weeks
981.35705 2.45644 (98*2π)/2082 weeks
99-1.70545 1.76713 (99*2π)/2082 weeks
100-1.37742 -1.86914 (100*2π)/2082 weeks
1012.2244 -.74531 (101*2π)/2082 weeks
102-.28792 3.57032 (102*2π)/2082 weeks
103-1.88988 .01241 (103*2π)/2082 weeks
104-1.32365   (104*2π)/2082 weeks
105-1.88988 -.01241 (105*2π)/2082 weeks
106-.28792 -3.57032 (106*2π)/2082 weeks
1072.2244 .74531 (107*2π)/2082 weeks
108-1.37742 1.86914 (108*2π)/2082 weeks
109-1.70545 -1.76713 (109*2π)/2082 weeks
1101.35705 -2.45644 (110*2π)/2082 weeks
1112.09374 2.81521 (111*2π)/2082 weeks
112-3.43292 -1.33618 (112*2π)/2082 weeks
1135.06062 .33083 (113*2π)/2082 weeks
114-4.70131 3.93109 (114*2π)/2082 weeks
115-.83624 -3.46727 (115*2π)/2082 weeks
1162.16753 -.63615 (116*2π)/2082 weeks
117-.45696 4.47286 (117*2π)/2082 weeks
118-5.88672 -3.91665 (118*2π)/2082 weeks
1194.76449 -2.91492 (119*2π)/2082 weeks
120-.17205 .96983 (120*2π)/2082 weeks
1211.99919 1.57297 (121*2π)/2082 weeks
122-3.66332 1.10301 (122*2π)/2082 weeks
123.50592 -3.40509 (123*2π)/2082 weeks
1244.2926 2.79953 (124*2π)/2082 weeks
125-5.93585 3.12283 (125*2π)/2082 weeks
126-.6566 -4.74943 (126*2π)/2082 weeks
127.60033 .43269 (127*2π)/2082 weeks
128-.13511 -.86192 (128*2π)/2082 weeks
129-.31238 -.53163 (129*2π)/2082 weeks
130.38936 .17157 (130*2π)/2082 weeks
131-.37711 -1.50665 (131*2π)/2082 weeks
1322.13282 -.07489 (132*2π)/2082 weeks
133-.46826 3.19273 (133*2π)/2082 weeks
134-2.69939 -1.31343 (134*2π)/2082 weeks
1351.13977 -1.48872 (135*2π)/2082 weeks
136.63216 3.76135 (136*2π)/2082 weeks
137-5.34892 -.4604 (137*2π)/2082 weeks
138-.91234 -5.30706 (138*2π)/2082 weeks
1393.90215 .42102 (139*2π)/2081 weeks
140.0637 .43987 (140*2π)/2081 weeks
141-2.15685 4.02168 (141*2π)/2081 weeks
142-3.15056 -4.50977 (142*2π)/2081 weeks
1432.83984 -.9118 (143*2π)/2081 weeks
144.89285 -.55616 (144*2π)/2081 weeks
145.13592 5.29815 (145*2π)/2081 weeks
146-5.52373 -1.94315 (146*2π)/2081 weeks
1472.23465 -4.65956 (147*2π)/2081 weeks
148.53767 3.38905 (148*2π)/2081 weeks
149.15843 -3.4854 (149*2π)/2081 weeks
1501.92995 3.34021 (150*2π)/2081 weeks
151-5.85711 1.7225 (151*2π)/2081 weeks
152.14573 -9.29883 (152*2π)/2081 weeks
1536.42717 4.47317 (153*2π)/2081 weeks
154-2.36129 .47391 (154*2π)/2081 weeks
155.47717 .16628 (155*2π)/2081 weeks
156-1.70096 -.19846 (156*2π)/2081 weeks
157-1.43089 -2.07455 (157*2π)/2081 weeks
1585.79947 -1.76353 (158*2π)/2081 weeks
159-4.28535 3.61482 (159*2π)/2081 weeks
1602.50766 -3.40864 (160*2π)/2081 weeks
161-.12438 3.46884 (161*2π)/2081 weeks
162-5.62421 -1.54496 (162*2π)/2081 weeks
1633.02313 -8.20974 (163*2π)/2081 weeks
1649.25376 4.67361 (164*2π)/2081 weeks
165-5.48002 6.66537 (165*2π)/2081 weeks
166-6.84608 -.6084 (166*2π)/2081 weeks
167.03863 -10.69213 (167*2π)/2081 weeks
16810.12077 3.45117 (168*2π)/2081 weeks
169-7.66338 7.28102 (169*2π)/2081 weeks
170-.91316 -9.19537 (170*2π)/2081 weeks
1715.07832 3.13943 (171*2π)/2081 weeks
172-5.20493 .28501 (172*2π)/2081 weeks
1736.49879 -2.74046 (173*2π)/2081 weeks
174-5.78643 8.57374 (174*2π)/2081 weeks
175-4.73414 -9.96033 (175*2π)/2081 weeks
1768.32723 3.26773 (176*2π)/2081 weeks
177-7.00654 -1.59942 (177*2π)/2081 weeks
1784.25665 -4.23279 (178*2π)/2081 weeks
1795.59359 .8217 (179*2π)/2081 weeks
180-1.02889 2.36063 (180*2π)/2081 weeks
181.0229 5.99782 (181*2π)/2081 weeks
182-9.36436 -2.09381 (182*2π)/2081 weeks
1835.45218 -11.13739 (183*2π)/2081 weeks
18410.64814 13.18208 (184*2π)/2081 weeks
185-18.03724 5.43759 (185*2π)/2081 weeks
186-3.80889 -16.67528 (186*2π)/2081 weeks
1876.77459 2.63901 (187*2π)/2081 weeks
188-6.33471 -4.30389 (188*2π)/2081 weeks
1898.41998 -13.45611 (189*2π)/2081 weeks
19014.46792 21.95507 (190*2π)/2081 weeks
191-24.38465 3.22703 (191*2π)/2081 weeks
1925.79491 -15.91355 (192*2π)/2081 weeks
193-3.39213 12.28829 (193*2π)/2081 weeks
1943.50399 -7.08654 (194*2π)/2081 weeks
195-12.54834 8.59837 (195*2π)/2081 weeks
196-6.79511 -12.92007 (196*2π)/2081 weeks
19711.9291 -4.91413 (197*2π)/2081 weeks
198-11.55026 10.70274 (198*2π)/2081 weeks
199-1.2154 -25.74816 (199*2π)/2081 weeks
20022.36707 13.26571 (200*2π)/2081 weeks
201-5.50123 -3.97125 (201*2π)/2081 weeks
202-8.77725 24.84636 (202*2π)/2081 weeks
203-14.00919 -29.51977 (203*2π)/2081 weeks
2045.17269 -26.04525 (204*2π)/2081 weeks
20559.4011 18.5715 (205*2π)/2081 weeks
206-89.54057 133.7327 (206*2π)/2081 weeks

Problems, Comments, Suggestions? Click here to contact Greg Thatcher

Please read my Disclaimer





Copyright (c) 2013 Thatcher Development Software, LLC. All rights reserved. No claim to original U.S. Gov't works.