Back to list of Stocks    See Also: Seasonal Analysis of WMTGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WMT (Walmart Inc)


WMT (Walmart Inc) appears to have interesting cyclic behaviour every 216 weeks (5.0893*sine), 180 weeks (4.4229*sine), and 196 weeks (3.9072*sine).

WMT (Walmart Inc) has an average price of 32.89 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 3/17/1980 to 7/26/2021 for WMT (Walmart Inc), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
032.88892   0 
111.56576 -29.18672 (1*2π)/21592,159 weeks
210.74951 -15.37341 (2*2π)/21591,080 weeks
31.59297 -13.77023 (3*2π)/2159720 weeks
46.0484 -8.03035 (4*2π)/2159540 weeks
52.07211 -8.91422 (5*2π)/2159432 weeks
63.60422 -9.54301 (6*2π)/2159360 weeks
7.58065 -7.4755 (7*2π)/2159308 weeks
8-.75766 -6.88384 (8*2π)/2159270 weeks
9.0664 -3.74464 (9*2π)/2159240 weeks
10.92847 -5.08927 (10*2π)/2159216 weeks
11.77405 -3.9072 (11*2π)/2159196 weeks
12.40871 -4.42285 (12*2π)/2159180 weeks
13.66237 -4.0521 (13*2π)/2159166 weeks
14-.18873 -3.95123 (14*2π)/2159154 weeks
15-.10296 -3.61289 (15*2π)/2159144 weeks
16-.76138 -3.18169 (16*2π)/2159135 weeks
17-.2194 -2.57812 (17*2π)/2159127 weeks
18-.42558 -2.1287 (18*2π)/2159120 weeks
19.70929 -2.2533 (19*2π)/2159114 weeks
20-.29806 -2.91465 (20*2π)/2159108 weeks
21-.23258 -2.07928 (21*2π)/2159103 weeks
22-.14644 -2.01538 (22*2π)/215998 weeks
23.23748 -1.89961 (23*2π)/215994 weeks
24-.10253 -2.05997 (24*2π)/215990 weeks
25.43584 -1.86685 (25*2π)/215986 weeks
26.03306 -2.647 (26*2π)/215983 weeks
27-.52258 -2.18915 (27*2π)/215980 weeks
28-.66716 -2.0187 (28*2π)/215977 weeks
29-.80097 -1.66578 (29*2π)/215974 weeks
30-.86032 -1.02802 (30*2π)/215972 weeks
31-.29422 -.70637 (31*2π)/215970 weeks
32.34572 -1.17143 (32*2π)/215967 weeks
33.00012 -1.63413 (33*2π)/215965 weeks
34-.34677 -1.17992 (34*2π)/215964 weeks
35-.19124 -1.49329 (35*2π)/215962 weeks
36-.42943 -.97854 (36*2π)/215960 weeks
37-.39776 -1.02234 (37*2π)/215958 weeks
38-.1457 -.77935 (38*2π)/215957 weeks
39-.14677 -1.00752 (39*2π)/215955 weeks
40-.10395 -.69631 (40*2π)/215954 weeks
41-.0826 -.9038 (41*2π)/215953 weeks
42-.11354 -.57551 (42*2π)/215951 weeks
43.04604 -.77168 (43*2π)/215950 weeks
44.17074 -.57214 (44*2π)/215949 weeks
45.30344 -.83341 (45*2π)/215948 weeks
46.46779 -.70299 (46*2π)/215947 weeks
47.26364 -1.19272 (47*2π)/215946 weeks
48.20115 -1.21873 (48*2π)/215945 weeks
49-.12299 -.97282 (49*2π)/215944 weeks
50.06359 -.96865 (50*2π)/215943 weeks
51-.00692 -1.05281 (51*2π)/215942 weeks
52-.28468 -1.07786 (52*2π)/215942 weeks
53-.24596 -.64746 (53*2π)/215941 weeks
54-.35463 -.60315 (54*2π)/215940 weeks
55.31033 -.31918 (55*2π)/215939 weeks
56.0494 -.79168 (56*2π)/215939 weeks
57.41968 -.56202 (57*2π)/215938 weeks
58.046 -.92677 (58*2π)/215937 weeks
59.28844 -.70588 (59*2π)/215937 weeks
60.15991 -.99903 (60*2π)/215936 weeks
61.17797 -.9652 (61*2π)/215935 weeks
62-.14375 -1.04395 (62*2π)/215935 weeks
63-.2308 -.8786 (63*2π)/215934 weeks
64-.15224 -.55536 (64*2π)/215934 weeks
65-.01356 -.84986 (65*2π)/215933 weeks
66-.20839 -.5504 (66*2π)/215933 weeks
67-.04438 -.62672 (67*2π)/215932 weeks
68.05753 -.28675 (68*2π)/215932 weeks
69.37214 -.68915 (69*2π)/215931 weeks
70.2731 -.79029 (70*2π)/215931 weeks
71-.00641 -1.13812 (71*2π)/215930 weeks
72-.11651 -.71837 (72*2π)/215930 weeks
73-.10475 -.85567 (73*2π)/215930 weeks
74-.04179 -.55481 (74*2π)/215929 weeks
75-.10125 -.88594 (75*2π)/215929 weeks
76-.09505 -.62135 (76*2π)/215928 weeks
77-.12588 -.88369 (77*2π)/215928 weeks
78-.23647 -.51722 (78*2π)/215928 weeks
79-.16382 -.67752 (79*2π)/215927 weeks
80-.10831 -.46189 (80*2π)/215927 weeks
81-.03027 -.56286 (81*2π)/215927 weeks
82-.01854 -.68843 (82*2π)/215926 weeks
83-.23667 -.69218 (83*2π)/215926 weeks
84-.06461 -.55931 (84*2π)/215926 weeks
85-.27832 -.60663 (85*2π)/215925 weeks
86-.12077 -.49908 (86*2π)/215925 weeks
87-.29223 -.49403 (87*2π)/215925 weeks
88.00007 -.44561 (88*2π)/215925 weeks
89-.26835 -.45619 (89*2π)/215924 weeks
90.08438 -.33942 (90*2π)/215924 weeks
91-.10464 -.58036 (91*2π)/215924 weeks
92-.05738 -.45027 (92*2π)/215923 weeks
93-.09452 -.57103 (93*2π)/215923 weeks
94-.17571 -.43271 (94*2π)/215923 weeks
95-.00656 -.40685 (95*2π)/215923 weeks
96-.1734 -.46379 (96*2π)/215922 weeks
97-.00775 -.38198 (97*2π)/215922 weeks
98-.02314 -.48289 (98*2π)/215922 weeks
99-.09571 -.47158 (99*2π)/215922 weeks
100-.02248 -.46541 (100*2π)/215922 weeks
101-.10095 -.48517 (101*2π)/215921 weeks
102-.08065 -.40334 (102*2π)/215921 weeks
103-.01132 -.45804 (103*2π)/215921 weeks
104-.13493 -.52183 (104*2π)/215921 weeks
105-.04985 -.41389 (105*2π)/215921 weeks
106-.03379 -.49687 (106*2π)/215920 weeks
107-.17919 -.55739 (107*2π)/215920 weeks
108-.1788 -.41262 (108*2π)/215920 weeks
109-.09762 -.526 (109*2π)/215920 weeks
110-.34239 -.41499 (110*2π)/215920 weeks
111-.19231 -.35496 (111*2π)/215919 weeks
112-.27742 -.27957 (112*2π)/215919 weeks
113-.06317 -.18649 (113*2π)/215919 weeks
114-.09962 -.25471 (114*2π)/215919 weeks
115-.02572 -.45153 (115*2π)/215919 weeks
116-.22313 -.2324 (116*2π)/215919 weeks
117-.06503 -.26221 (117*2π)/215918 weeks
118.00582 -.1915 (118*2π)/215918 weeks
119-.00047 -.46511 (119*2π)/215918 weeks
120-.12342 -.25292 (120*2π)/215918 weeks
121-.09398 -.37041 (121*2π)/215918 weeks
122-.06848 -.23921 (122*2π)/215918 weeks
123-.16831 -.24499 (123*2π)/215918 weeks
124.13957 -.22371 (124*2π)/215917 weeks
125-.06583 -.30949 (125*2π)/215917 weeks
126.03969 -.35009 (126*2π)/215917 weeks
127-.1367 -.31183 (127*2π)/215917 weeks
128.06501 -.2141 (128*2π)/215917 weeks
129-.08385 -.37776 (129*2π)/215917 weeks
130-.01381 -.21117 (130*2π)/215917 weeks
131.08281 -.2788 (131*2π)/215916 weeks
132.01622 -.39585 (132*2π)/215916 weeks
133-.10508 -.32728 (133*2π)/215916 weeks
134.08491 -.211 (134*2π)/215916 weeks
135-.00605 -.42424 (135*2π)/215916 weeks
136.00129 -.3059 (136*2π)/215916 weeks
137.00805 -.34636 (137*2π)/215916 weeks
138.03614 -.36182 (138*2π)/215916 weeks
139-.09037 -.40686 (139*2π)/215916 weeks
140.02627 -.3336 (140*2π)/215915 weeks
141-.06058 -.41355 (141*2π)/215915 weeks
142-.07814 -.39052 (142*2π)/215915 weeks
143-.16055 -.40709 (143*2π)/215915 weeks
144-.11912 -.24857 (144*2π)/215915 weeks
145-.02719 -.37071 (145*2π)/215915 weeks
146-.23024 -.33692 (146*2π)/215915 weeks
147-.11558 -.24797 (147*2π)/215915 weeks
148-.2174 -.26245 (148*2π)/215915 weeks
149-.05799 -.10063 (149*2π)/215914 weeks
150-.05571 -.23651 (150*2π)/215914 weeks
151.0187 -.19921 (151*2π)/215914 weeks
152-.13748 -.27271 (152*2π)/215914 weeks
153.05613 -.09401 (153*2π)/215914 weeks
154.0043 -.33231 (154*2π)/215914 weeks
155.02338 -.18045 (155*2π)/215914 weeks
156-.01909 -.32472 (156*2π)/215914 weeks
157.03189 -.25323 (157*2π)/215914 weeks
158-.09769 -.32821 (158*2π)/215914 weeks
159.00223 -.21378 (159*2π)/215914 weeks
160-.08273 -.25224 (160*2π)/215913 weeks
161.09413 -.23263 (161*2π)/215913 weeks
162-.16232 -.26844 (162*2π)/215913 weeks
163.09073 -.15623 (163*2π)/215913 weeks
164.0239 -.21483 (164*2π)/215913 weeks
165.12935 -.3125 (165*2π)/215913 weeks
166.04562 -.29575 (166*2π)/215913 weeks
167.07166 -.38347 (167*2π)/215913 weeks
168-.05719 -.34339 (168*2π)/215913 weeks
169.03589 -.37068 (169*2π)/215913 weeks
170-.05197 -.34595 (170*2π)/215913 weeks
171-.08257 -.45959 (171*2π)/215913 weeks
172-.22805 -.25853 (172*2π)/215913 weeks
173-.05414 -.23087 (173*2π)/215912 weeks
174-.08244 -.22781 (174*2π)/215912 weeks
175-.10735 -.26482 (175*2π)/215912 weeks
176.01959 -.12394 (176*2π)/215912 weeks
177.02008 -.27929 (177*2π)/215912 weeks
178.06771 -.30591 (178*2π)/215912 weeks
179-.03957 -.33886 (179*2π)/215912 weeks
180.03144 -.33056 (180*2π)/215912 weeks
181-.13812 -.41427 (181*2π)/215912 weeks
182-.08473 -.31744 (182*2π)/215912 weeks
183-.19945 -.24984 (183*2π)/215912 weeks
184-.05743 -.26983 (184*2π)/215912 weeks
185-.13162 -.18668 (185*2π)/215912 weeks
186.03889 -.27791 (186*2π)/215912 weeks
187-.13357 -.30001 (187*2π)/215912 weeks
188-.05462 -.29014 (188*2π)/215911 weeks
189-.20525 -.27387 (189*2π)/215911 weeks
190-.03902 -.16998 (190*2π)/215911 weeks
191-.1556 -.28452 (191*2π)/215911 weeks
192-.07674 -.16123 (192*2π)/215911 weeks
193-.14016 -.21753 (193*2π)/215911 weeks
194-.00675 -.14286 (194*2π)/215911 weeks
195-.10233 -.2075 (195*2π)/215911 weeks
196.01138 -.11268 (196*2π)/215911 weeks
197.03107 -.24036 (197*2π)/215911 weeks
198.04796 -.22082 (198*2π)/215911 weeks
199.01031 -.31801 (199*2π)/215911 weeks
200.01205 -.30911 (200*2π)/215911 weeks
201-.06099 -.37758 (201*2π)/215911 weeks
202-.13134 -.30936 (202*2π)/215911 weeks
203-.10795 -.31364 (203*2π)/215911 weeks
204-.17239 -.2662 (204*2π)/215911 weeks
205-.09251 -.2441 (205*2π)/215911 weeks
206-.17486 -.29684 (206*2π)/215910 weeks
207-.1677 -.20059 (207*2π)/215910 weeks
208-.18316 -.20723 (208*2π)/215910 weeks
209-.14752 -.12742 (209*2π)/215910 weeks
210-.10612 -.1404 (210*2π)/215910 weeks
211-.06279 -.15013 (211*2π)/215910 weeks
212-.04843 -.18729 (212*2π)/215910 weeks
213-.0919 -.24609 (213*2π)/215910 weeks
214-.1234 -.13748 (214*2π)/215910 weeks
215-.0673 -.20115 (215*2π)/215910 weeks
216-.12617 -.17438 (216*2π)/215910 weeks
217-.0657 -.1977 (217*2π)/215910 weeks
218-.14097 -.1412 (218*2π)/215910 weeks
219-.13026 -.178 (219*2π)/215910 weeks
220-.09904 -.04613 (220*2π)/215910 weeks
221-.01938 -.11905 (221*2π)/215910 weeks
222-.04102 -.13439 (222*2π)/215910 weeks
223-.06466 -.14126 (223*2π)/215910 weeks
224-.00446 -.08276 (224*2π)/215910 weeks
225.03189 -.14642 (225*2π)/215910 weeks
226.00966 -.18024 (226*2π)/215910 weeks
227.01463 -.20825 (227*2π)/215910 weeks
228-.01785 -.23703 (228*2π)/21599 weeks
229-.0662 -.20065 (229*2π)/21599 weeks
230-.02094 -.20749 (230*2π)/21599 weeks
231-.13677 -.20036 (231*2π)/21599 weeks
232-.00619 -.14654 (232*2π)/21599 weeks
233-.09408 -.12816 (233*2π)/21599 weeks
234.05932 -.17423 (234*2π)/21599 weeks
235-.07548 -.20215 (235*2π)/21599 weeks
236.00694 -.20114 (236*2π)/21599 weeks
237-.09702 -.15514 (237*2π)/21599 weeks
238.01424 -.19227 (238*2π)/21599 weeks
239-.05001 -.13068 (239*2π)/21599 weeks
240.07478 -.22545 (240*2π)/21599 weeks
241-.0725 -.23613 (241*2π)/21599 weeks
242-.00572 -.24152 (242*2π)/21599 weeks
243-.11249 -.24836 (243*2π)/21599 weeks
244-.09718 -.18026 (244*2π)/21599 weeks
245-.08309 -.15105 (245*2π)/21599 weeks
246-.06378 -.15723 (246*2π)/21599 weeks
247-.01078 -.12303 (247*2π)/21599 weeks
248.00605 -.21678 (248*2π)/21599 weeks
249-.04415 -.22815 (249*2π)/21599 weeks
250-.13538 -.20788 (250*2π)/21599 weeks
251-.02914 -.10907 (251*2π)/21599 weeks
252-.0447 -.17447 (252*2π)/21599 weeks
253-.01604 -.16398 (253*2π)/21599 weeks
254-.02802 -.17964 (254*2π)/21599 weeks
255-.02182 -.18983 (255*2π)/21598 weeks
256-.03132 -.18361 (256*2π)/21598 weeks
257-.02103 -.18745 (257*2π)/21598 weeks
258.03286 -.21328 (258*2π)/21598 weeks
259-.07989 -.26613 (259*2π)/21598 weeks
260-.02779 -.21733 (260*2π)/21598 weeks
261-.09975 -.23062 (261*2π)/21598 weeks
262-.05038 -.19559 (262*2π)/21598 weeks
263-.0666 -.24218 (263*2π)/21598 weeks
264-.11778 -.25588 (264*2π)/21598 weeks
265-.14825 -.16191 (265*2π)/21598 weeks
266-.11073 -.1552 (266*2π)/21598 weeks
267-.06349 -.13764 (267*2π)/21598 weeks
268-.1094 -.18048 (268*2π)/21598 weeks
269-.06374 -.10829 (269*2π)/21598 weeks
270-.02717 -.16742 (270*2π)/21598 weeks
271-.04483 -.15821 (271*2π)/21598 weeks
272-.05646 -.1948 (272*2π)/21598 weeks
273-.04589 -.20107 (273*2π)/21598 weeks
274-.13415 -.18057 (274*2π)/21598 weeks
275-.02298 -.1307 (275*2π)/21598 weeks
276-.12415 -.20319 (276*2π)/21598 weeks
277-.03206 -.11166 (277*2π)/21598 weeks
278-.07882 -.16415 (278*2π)/21598 weeks
279.00965 -.14535 (279*2π)/21598 weeks
280-.07615 -.26822 (280*2π)/21598 weeks
281-.08744 -.14402 (281*2π)/21598 weeks
282-.09783 -.15794 (282*2π)/21598 weeks
283-.01361 -.14598 (283*2π)/21598 weeks
284-.06313 -.19916 (284*2π)/21598 weeks
285-.04818 -.20855 (285*2π)/21598 weeks
286-.12256 -.17314 (286*2π)/21598 weeks
287-.05192 -.17209 (287*2π)/21598 weeks
288-.09263 -.15686 (288*2π)/21597 weeks
289-.03288 -.21211 (289*2π)/21597 weeks
290-.12172 -.17966 (290*2π)/21597 weeks
291-.08713 -.19742 (291*2π)/21597 weeks
292-.08912 -.16001 (292*2π)/21597 weeks
293-.11053 -.23035 (293*2π)/21597 weeks
294-.18175 -.10733 (294*2π)/21597 weeks
295-.09775 -.14802 (295*2π)/21597 weeks
296-.07985 -.09212 (296*2π)/21597 weeks
297-.06483 -.18611 (297*2π)/21597 weeks
298-.12992 -.13409 (298*2π)/21597 weeks
299-.09461 -.15296 (299*2π)/21597 weeks
300-.13099 -.1255 (300*2π)/21597 weeks
301-.12392 -.10221 (301*2π)/21597 weeks
302-.09042 -.10943 (302*2π)/21597 weeks
303-.10244 -.05994 (303*2π)/21597 weeks
304-.04124 -.05725 (304*2π)/21597 weeks
305-.0123 -.10741 (305*2π)/21597 weeks
306-.02563 -.12925 (306*2π)/21597 weeks
307-.05815 -.15367 (307*2π)/21597 weeks
308-.03686 -.11399 (308*2π)/21597 weeks
309-.03485 -.15915 (309*2π)/21597 weeks
310-.07304 -.1302 (310*2π)/21597 weeks
311-.05624 -.1491 (311*2π)/21597 weeks
312-.0165 -.14285 (312*2π)/21597 weeks
313-.11414 -.18459 (313*2π)/21597 weeks
314-.0699 -.08437 (314*2π)/21597 weeks
315-.00925 -.12214 (315*2π)/21597 weeks
316-.04212 -.1666 (316*2π)/21597 weeks
317-.07785 -.16162 (317*2π)/21597 weeks
318-.02182 -.11937 (318*2π)/21597 weeks
319-.03967 -.19045 (319*2π)/21597 weeks
320-.06215 -.15909 (320*2π)/21597 weeks
321-.03721 -.20924 (321*2π)/21597 weeks
322-.12571 -.18501 (322*2π)/21597 weeks
323-.09734 -.15887 (323*2π)/21597 weeks
324-.09847 -.14219 (324*2π)/21597 weeks
325-.06633 -.14823 (325*2π)/21597 weeks
326-.07299 -.1701 (326*2π)/21597 weeks
327-.11762 -.18492 (327*2π)/21597 weeks
328-.10756 -.1744 (328*2π)/21597 weeks
329-.15124 -.14473 (329*2π)/21597 weeks
330-.11381 -.13851 (330*2π)/21597 weeks
331-.16084 -.12481 (331*2π)/21597 weeks
332-.11725 -.11169 (332*2π)/21597 weeks
333-.13896 -.07926 (333*2π)/21596 weeks
334-.07517 -.11545 (334*2π)/21596 weeks
335-.14774 -.10896 (335*2π)/21596 weeks
336-.13419 -.10087 (336*2π)/21596 weeks
337-.14111 -.02858 (337*2π)/21596 weeks
338-.0937 -.03395 (338*2π)/21596 weeks
339-.03852 -.03405 (339*2π)/21596 weeks
340-.06244 -.10709 (340*2π)/21596 weeks
341-.05756 -.06864 (341*2π)/21596 weeks
342-.0737 -.06882 (342*2π)/21596 weeks
343-.06462 -.07805 (343*2π)/21596 weeks
344-.0527 -.0274 (344*2π)/21596 weeks
345-.00353 -.10445 (345*2π)/21596 weeks
346-.05007 -.07143 (346*2π)/21596 weeks
347-.00018 -.11562 (347*2π)/21596 weeks
348-.06525 -.09329 (348*2π)/21596 weeks
349-.02486 -.09585 (349*2π)/21596 weeks
350-.03837 -.0883 (350*2π)/21596 weeks
351-.02036 -.11779 (351*2π)/21596 weeks
352-.02847 -.07695 (352*2π)/21596 weeks
353.00592 -.12897 (353*2π)/21596 weeks
354-.02252 -.13681 (354*2π)/21596 weeks
355-.05236 -.13144 (355*2π)/21596 weeks
356-.01731 -.1019 (356*2π)/21596 weeks
357-.02078 -.14844 (357*2π)/21596 weeks
358.00949 -.12362 (358*2π)/21596 weeks
359-.03484 -.2 (359*2π)/21596 weeks
360-.05587 -.16971 (360*2π)/21596 weeks
361-.06004 -.1442 (361*2π)/21596 weeks
362-.05762 -.18427 (362*2π)/21596 weeks
363-.09296 -.1397 (363*2π)/21596 weeks
364-.04542 -.16301 (364*2π)/21596 weeks
365-.09724 -.14293 (365*2π)/21596 weeks
366-.08397 -.18182 (366*2π)/21596 weeks
367-.08758 -.13661 (367*2π)/21596 weeks
368-.11907 -.15964 (368*2π)/21596 weeks