Back to list of Stocks    See Also: Seasonal Analysis of WSFSGenetic Algorithms Stock Portfolio Generator, and Best Months to Buy/Sell Stocks

Fourier Analysis of WSFS (WSFS Financial Corporation)


WSFS (WSFS Financial Corporation) appears to have interesting cyclic behaviour every 165 weeks (1.6222*sine), 72 weeks (1.3885*sine), and 181 weeks (1.3687*sine).

WSFS (WSFS Financial Corporation) has an average price of 13.63 (topmost row, frequency = 0).



Click on the checkboxes shown on the right to see how the various frequencies contribute to the graph. Look for large magnitude coefficients (sine or cosine), as these are associated with frequencies which contribute most to the associated stock plot. If you find a large magnitude coefficient which dramatically changes the graph, look at the associated "Period" in weeks, as you may have found a significant recurring cycle for the stock of interest.

Right click on the graph above to see the menu of operations (download, full screen, etc.)

Fourier Analysis

Using data from 11/26/1986 to 7/26/2021 for WSFS (WSFS Financial Corporation), this program was able to calculate the following Fourier Series:
Sequence #Cosine Coefficients Sine Coefficients FrequenciesPeriod
013.62914   0 
16.01399 -12.17838 (1*2π)/18101,810 weeks
24.69703 -8.0675 (2*2π)/1810905 weeks
3-1.60159 -7.74422 (3*2π)/1810603 weeks
4-1.09848 -1.60422 (4*2π)/1810453 weeks
5-1.14987 -2.48643 (5*2π)/1810362 weeks
6-.4963 -.70965 (6*2π)/1810302 weeks
7.16114 -.2398 (7*2π)/1810259 weeks
8.39136 -.94233 (8*2π)/1810226 weeks
9.97774 -.46148 (9*2π)/1810201 weeks
101.29072 -1.3687 (10*2π)/1810181 weeks
11.2671 -1.6222 (11*2π)/1810165 weeks
12.39041 -.82566 (12*2π)/1810151 weeks
13.66473 -.77264 (13*2π)/1810139 weeks
14.46287 -1.14641 (14*2π)/1810129 weeks
15.36919 -.86815 (15*2π)/1810121 weeks
16.54364 -.72975 (16*2π)/1810113 weeks
17.33212 -.87155 (17*2π)/1810106 weeks
18.36149 -.81409 (18*2π)/1810101 weeks
19.67083 -.98776 (19*2π)/181095 weeks
20.26545 -1.15339 (20*2π)/181091 weeks
21.30826 -.9361 (21*2π)/181086 weeks
22.54831 -1.09392 (22*2π)/181082 weeks
23.2534 -1.28971 (23*2π)/181079 weeks
24.24665 -1.30244 (24*2π)/181075 weeks
25-.21665 -1.38846 (25*2π)/181072 weeks
26-.43859 -1.00724 (26*2π)/181070 weeks
27-.23718 -.98424 (27*2π)/181067 weeks
28-.68719 -.82591 (28*2π)/181065 weeks
29-.45809 -.32506 (29*2π)/181062 weeks
30-.31508 -.56526 (30*2π)/181060 weeks
31-.1928 -.40702 (31*2π)/181058 weeks
32-.21895 -.48583 (32*2π)/181057 weeks
33-.19661 -.53434 (33*2π)/181055 weeks
34-.36177 -.43155 (34*2π)/181053 weeks
35-.14804 -.27578 (35*2π)/181052 weeks
36-.16409 -.37212 (36*2π)/181050 weeks
37-.03795 -.30557 (37*2π)/181049 weeks
38-.07622 -.51487 (38*2π)/181048 weeks
39-.30396 -.22703 (39*2π)/181046 weeks
40.06455 -.21352 (40*2π)/181045 weeks
41-.12095 -.43324 (41*2π)/181044 weeks
42-.15087 -.26308 (42*2π)/181043 weeks
43-.01578 -.23819 (43*2π)/181042 weeks
44-.02589 -.36881 (44*2π)/181041 weeks
45-.04291 -.21752 (45*2π)/181040 weeks
46.23248 -.36799 (46*2π)/181039 weeks
47-.01383 -.5941 (47*2π)/181039 weeks
48-.06714 -.52202 (48*2π)/181038 weeks
49-.1676 -.50517 (49*2π)/181037 weeks
50-.27664 -.46369 (50*2π)/181036 weeks
51-.38071 -.29092 (51*2π)/181035 weeks
52-.20602 -.11001 (52*2π)/181035 weeks
53-.26947 -.11884 (53*2π)/181034 weeks
54-.03916 -.0167 (54*2π)/181034 weeks
55-.04227 -.12137 (55*2π)/181033 weeks
56-.07253 -.20072 (56*2π)/181032 weeks
57-.11094 -.09236 (57*2π)/181032 weeks
58.01624 -.10816 (58*2π)/181031 weeks
59-.01633 -.16506 (59*2π)/181031 weeks
60.02361 -.2079 (60*2π)/181030 weeks
61-.02349 -.17906 (61*2π)/181030 weeks
62.02003 -.20926 (62*2π)/181029 weeks
63-.04714 -.21042 (63*2π)/181029 weeks
64-.05698 -.11165 (64*2π)/181028 weeks
65.06501 -.10728 (65*2π)/181028 weeks
66.00097 -.22834 (66*2π)/181027 weeks
67.06926 -.11457 (67*2π)/181027 weeks
68.10027 -.30685 (68*2π)/181027 weeks
69.03293 -.36509 (69*2π)/181026 weeks
70-.07057 -.34091 (70*2π)/181026 weeks
71-.08596 -.33986 (71*2π)/181025 weeks
72-.12274 -.26503 (72*2π)/181025 weeks
73.00139 -.2362 (73*2π)/181025 weeks
74-.07441 -.34937 (74*2π)/181024 weeks
75-.10959 -.2953 (75*2π)/181024 weeks
76-.17017 -.25235 (76*2π)/181024 weeks
77-.13975 -.17396 (77*2π)/181024 weeks
78-.12025 -.22718 (78*2π)/181023 weeks
79-.16394 -.15299 (79*2π)/181023 weeks
80-.13461 -.18139 (80*2π)/181023 weeks
81-.1691 -.121 (81*2π)/181022 weeks
82-.15339 -.08509 (82*2π)/181022 weeks
83-.07623 -.09397 (83*2π)/181022 weeks
84-.12133 -.08958 (84*2π)/181022 weeks
85-.0113 -.04296 (85*2π)/181021 weeks
86.01946 -.16042 (86*2π)/181021 weeks
87-.14789 -.13519 (87*2π)/181021 weeks
88-.06291 -.03787 (88*2π)/181021 weeks
89-.08476 -.03253 (89*2π)/181020 weeks
90.02863 .02755 (90*2π)/181020 weeks
91.15 -.1091 (91*2π)/181020 weeks
92.05189 -.25304 (92*2π)/181020 weeks
93-.0424 -.20061 (93*2π)/181019 weeks
94-.12399 -.19824 (94*2π)/181019 weeks
95-.09711 -.07644 (95*2π)/181019 weeks
96-.03093 -.0539 (96*2π)/181019 weeks
97.0132 -.08305 (97*2π)/181019 weeks
98.04251 -.14573 (98*2π)/181018 weeks
99.03286 -.19128 (99*2π)/181018 weeks
100-.08498 -.26843 (100*2π)/181018 weeks
101-.13714 -.14277 (101*2π)/181018 weeks
102-.08805 -.09517 (102*2π)/181018 weeks
103-.09247 -.07706 (103*2π)/181018 weeks
104.00257 -.0589 (104*2π)/181017 weeks
105-.04578 -.18927 (105*2π)/181017 weeks
106-.17009 -.08452 (106*2π)/181017 weeks
107-.04563 .02172 (107*2π)/181017 weeks
108.01498 -.07731 (108*2π)/181017 weeks
109-.06715 -.0126 (109*2π)/181017 weeks
110.13318 -.00347 (110*2π)/181016 weeks
111.03425 -.14644 (111*2π)/181016 weeks
112.0491 -.08864 (112*2π)/181016 weeks
113.08258 -.15643 (113*2π)/181016 weeks
114-.02202 -.22393 (114*2π)/181016 weeks
115-.0494 -.14275 (115*2π)/181016 weeks
116-.06122 -.15876 (116*2π)/181016 weeks
117-.06898 -.06801 (117*2π)/181015 weeks
118.033 -.12492 (118*2π)/181015 weeks
119-.02006 -.16999 (119*2π)/181015 weeks
120-.02074 -.12182 (120*2π)/181015 weeks
121.01353 -.20021 (121*2π)/181015 weeks
122-.11031 -.22572 (122*2π)/181015 weeks
123-.12916 -.14801 (123*2π)/181015 weeks
124-.10957 -.10617 (124*2π)/181015 weeks
125-.09547 -.12678 (125*2π)/181014 weeks
126-.08039 -.01945 (126*2π)/181014 weeks
127.01254 -.11585 (127*2π)/181014 weeks
128-.05019 -.17034 (128*2π)/181014 weeks
129-.11014 -.14182 (129*2π)/181014 weeks
130-.14291 -.12393 (130*2π)/181014 weeks
131-.14624 -.06586 (131*2π)/181014 weeks
132-.1298 -.01801 (132*2π)/181014 weeks
133-.1381 .02011 (133*2π)/181014 weeks
134-.03959 .07639 (134*2π)/181014 weeks
135.04922 -.01605 (135*2π)/181013 weeks
136-.04977 -.05696 (136*2π)/181013 weeks
137-.01322 .02488 (137*2π)/181013 weeks
138-.01487 -.02615 (138*2π)/181013 weeks
139.03365 -.01217 (139*2π)/181013 weeks
140.01519 -.0288 (140*2π)/181013 weeks
141.06776 -.04269 (141*2π)/181013 weeks
142.01527 -.11073 (142*2π)/181013 weeks
143-.00961 -.10794 (143*2π)/181013 weeks
144-.06004 -.08156 (144*2π)/181013 weeks
145-.02467 -.02604 (145*2π)/181012 weeks
146.025 -.05831 (146*2π)/181012 weeks
147-.01097 -.08201 (147*2π)/181012 weeks
148.00342 -.05661 (148*2π)/181012 weeks
149-.01688 -.08987 (149*2π)/181012 weeks
150-.03981 -.08795 (150*2π)/181012 weeks
151-.06029 -.04042 (151*2π)/181012 weeks
152-.00523 -.0502 (152*2π)/181012 weeks
153-.04951 -.06253 (153*2π)/181012 weeks
154.0101 -.0316 (154*2π)/181012 weeks
155.00066 -.08442 (155*2π)/181012 weeks
156.00959 -.11429 (156*2π)/181012 weeks
157-.05579 -.0971 (157*2π)/181012 weeks
158-.06859 -.08538 (158*2π)/181011 weeks
159-.10402 -.00893 (159*2π)/181011 weeks
160.01379 .00272 (160*2π)/181011 weeks
161-.04299 -.04979 (161*2π)/181011 weeks
162-.02365 .01875 (162*2π)/181011 weeks
163.00669 -.02901 (163*2π)/181011 weeks
164-.00348 .01562 (164*2π)/181011 weeks
165.0763 -.02551 (165*2π)/181011 weeks
166.01433 -.07518 (166*2π)/181011 weeks
167.03579 -.02273 (167*2π)/181011 weeks
168.05521 -.05884 (168*2π)/181011 weeks
169.02767 -.07767 (169*2π)/181011 weeks
170.0468 -.06751 (170*2π)/181011 weeks
171.02745 -.11305 (171*2π)/181011 weeks
172.0111 -.10035 (172*2π)/181011 weeks
173.01361 -.11179 (173*2π)/181010 weeks
174-.02194 -.11612 (174*2π)/181010 weeks
175-.03154 -.10174 (175*2π)/181010 weeks
176-.06428 -.08778 (176*2π)/181010 weeks
177-.05612 -.02236 (177*2π)/181010 weeks
178-.044 .00181 (178*2π)/181010 weeks
179.02884 -.00683 (179*2π)/181010 weeks
180.04072 -.03041 (180*2π)/181010 weeks
181.0347 -.07238 (181*2π)/181010 weeks
182.03278 -.07662 (182*2π)/181010 weeks
183.02257 -.09421 (183*2π)/181010 weeks
184.00635 -.08269 (184*2π)/181010 weeks
185.02385 -.07617 (185*2π)/181010 weeks
186.04435 -.09134 (186*2π)/181010 weeks
187.00544 -.14156 (187*2π)/181010 weeks
188-.01663 -.11535 (188*2π)/181010 weeks
189-.01295 -.10311 (189*2π)/181010 weeks
190-.03347 -.09846 (190*2π)/181010 weeks
191-.05254 -.07628 (191*2π)/18109 weeks
192.02525 -.05809 (192*2π)/18109 weeks
193-.00473 -.10412 (193*2π)/18109 weeks
194-.00498 -.1018 (194*2π)/18109 weeks
195.00221 -.12432 (195*2π)/18109 weeks
196-.04196 -.12426 (196*2π)/18109 weeks
197-.06438 -.09372 (197*2π)/18109 weeks
198-.05594 -.08824 (198*2π)/18109 weeks
199-.05309 -.06544 (199*2π)/18109 weeks
200-.02731 -.07243 (200*2π)/18109 weeks
201-.04033 -.08817 (201*2π)/18109 weeks
202-.0769 -.07716 (202*2π)/18109 weeks
203-.03792 -.05692 (203*2π)/18109 weeks
204-.08033 -.08559 (204*2π)/18109 weeks
205-.04778 -.00459 (205*2π)/18109 weeks
206-.00114 -.05028 (206*2π)/18109 weeks
207-.03234 -.05127 (207*2π)/18109 weeks
208-.01024 -.03932 (208*2π)/18109 weeks
209-.01949 -.05464 (209*2π)/18109 weeks
210-.01454 -.04144 (210*2π)/18109 weeks
211.00439 -.07257 (211*2π)/18109 weeks
212-.03256 -.07514 (212*2π)/18109 weeks
213-.04538 -.02929 (213*2π)/18108 weeks
214.02101 -.0603 (214*2π)/18108 weeks
215-.01225 -.04275 (215*2π)/18108 weeks
216.03527 -.08142 (216*2π)/18108 weeks
217-.04052 -.08488 (217*2π)/18108 weeks
218.02441 -.07212 (218*2π)/18108 weeks
219-.01546 -.10958 (219*2π)/18108 weeks
220-.02374 -.10822 (220*2π)/18108 weeks
221-.04298 -.11933 (221*2π)/18108 weeks
222-.11212 -.10436 (222*2π)/18108 weeks
223-.06853 -.03237 (223*2π)/18108 weeks
224-.06898 -.06193 (224*2π)/18108 weeks
225-.08379 -.02293 (225*2π)/18108 weeks
226-.04245 -.03619 (226*2π)/18108 weeks
227-.06367 -.02905 (227*2π)/18108 weeks
228-.04184 .00336 (228*2π)/18108 weeks
229-.01293 -.05913 (229*2π)/18108 weeks
230-.05578 -.02048 (230*2π)/18108 weeks
231-.01832 -.03413 (231*2π)/18108 weeks
232-.04907 -.03962 (232*2π)/18108 weeks
233-.05883 -.00546 (233*2π)/18108 weeks
234-.00263 .01195 (234*2π)/18108 weeks
235-.02158 -.03206 (235*2π)/18108 weeks
236.01193 -.01517 (236*2π)/18108 weeks
237-.02279 -.04495 (237*2π)/18108 weeks
238-.00048 -.04234 (238*2π)/18108 weeks
239-.0344 -.02491 (239*2π)/18108 weeks
240-.00438 -.02369 (240*2π)/18108 weeks
241.01113 .01072 (241*2π)/18108 weeks
242.06248 -.0435 (242*2π)/18107 weeks
243.0472 -.05683 (243*2π)/18107 weeks
244.03258 -.08285 (244*2π)/18107 weeks
245.03508 -.07884 (245*2π)/18107 weeks
246.00884 -.13182 (246*2π)/18107 weeks
247-.03857 -.09569 (247*2π)/18107 weeks
248-.0462 -.06977 (248*2π)/18107 weeks
249-.03512 -.10996 (249*2π)/18107 weeks
250-.10068 -.04664 (250*2π)/18107 weeks
251-.03433 -.0223 (251*2π)/18107 weeks
252-.04751 -.03235 (252*2π)/18107 weeks
253-.02178 -.01414 (253*2π)/18107 weeks
254.00056 -.01948 (254*2π)/18107 weeks
255-.00776 -.02692 (255*2π)/18107 weeks
256.03328 -.04246 (256*2π)/18107 weeks
257-.02435 -.07823 (257*2π)/18107 weeks
258-.01564 -.02669 (258*2π)/18107 weeks
259.01576 -.06476 (259*2π)/18107 weeks
260-.04587 -.0672 (260*2π)/18107 weeks
261-.00625 -.01324 (261*2π)/18107 weeks
262.01826 -.07155 (262*2π)/18107 weeks
263-.00817 -.05092 (263*2π)/18107 weeks
264.01058 -.08324 (264*2π)/18107 weeks
265-.00889 -.06338 (265*2π)/18107 weeks
266.00766 -.08523 (266*2π)/18107 weeks
267-.00726 -.10677 (267*2π)/18107 weeks
268-.02595 -.11827 (268*2π)/18107 weeks
269-.06405 -.10481 (269*2π)/18107 weeks
270-.08187 -.07383 (270*2π)/18107 weeks
271-.07001 -.03881 (271*2π)/18107 weeks
272-.06776 -.02601 (272*2π)/18107 weeks
273-.01315 -.03024 (273*2π)/18107 weeks
274-.0228 -.05641 (274*2π)/18107 weeks
275-.01653 -.06925 (275*2π)/18107 weeks
276-.02974 -.09212 (276*2π)/18107 weeks
277-.05744 -.07264 (277*2π)/18107 weeks
278-.06868 -.07965 (278*2π)/18107 weeks
279-.0842 -.04334 (279*2π)/18106 weeks
280-.06952 -.01624 (280*2π)/18106 weeks
281-.05467 -.01188 (281*2π)/18106 weeks
282-.04139 -.00497 (282*2π)/18106 weeks
283-.01374 -.0063 (283*2π)/18106 weeks
284-.03145 -.04142 (284*2π)/18106 weeks
285-.01952 -.02269 (285*2π)/18106 weeks
286-.03378 -.03232 (286*2π)/18106 weeks
287-.02842 -.01678 (287*2π)/18106 weeks
288.00204 -.02281 (288*2π)/18106 weeks
289-.01267 -.05524 (289*2π)/18106 weeks
290-.04653 -.04096 (290*2π)/18106 weeks
291-.03963 -.0347 (291*2π)/18106 weeks
292-.05139 .01208 (292*2π)/18106 weeks
293-.00138 .00598 (293*2π)/18106 weeks
294-.01053 -.00888 (294*2π)/18106 weeks
295.01015 -.01721 (295*2π)/18106 weeks
296-.00205 -.07055 (296*2π)/18106 weeks
297-.03286 -.03625 (297*2π)/18106 weeks
298-.02029 -.02291 (298*2π)/18106 weeks
299-.00967 -.03543 (299*2π)/18106 weeks
300-.0224 -.02526 (300*2π)/18106 weeks
301.00933 -.01712 (301*2π)/18106 weeks
302-.0062 -.0656 (302*2π)/18106 weeks
303-.01363 -.0397 (303*2π)/18106 weeks
304-.03701 -.07016 (304*2π)/18106 weeks
305-.05481 -.02556 (305*2π)/18106 weeks
306-.0531 -.01366 (306*2π)/18106 weeks
307-.02676 .00847 (307*2π)/18106 weeks
308.02683 .00041 (308*2π)/18106 weeks
309.01559 -.05515 (309*2π)/18106 weeks
310-.01411 -.03956 (310*2π)/18106 weeks
311.00062 -.05097 (311*2π)/18106 weeks
312-.02389 -.04475 (312*2π)/18106 weeks
313-.00649 -.04332 (313*2π)/18106 weeks
314-.0195 -.04349 (314*2π)/18106 weeks
315-.00339 -.03462 (315*2π)/18106 weeks
316-.00372 -.07183 (316*2π)/18106 weeks
317-.0303 -.06953 (317*2π)/18106 weeks
318-.03466 -.0533 (318*2π)/18106 weeks
319-.05549 -.07168 (319*2π)/18106 weeks
320-.06978 -.02078 (320*2π)/18106 weeks
321-.04424 -.00824 (321*2π)/18106 weeks
322-.02792 -.01252 (322*2π)/18106 weeks
323.00754 -.03671 (323*2π)/18106 weeks
324-.05608 -.03818 (324*2π)/18106 weeks
325-.01414 -.01025 (325*2π)/18106 weeks
326-.01375 -.03325 (326*2π)/18106 weeks
327-.02984 -.01587 (327*2π)/18106 weeks
328-.00862 -.02064 (328*2π)/18106 weeks
329-.02231 -.02952 (329*2π)/18106 weeks
330-.02115 -.00567 (330*2π)/18105 weeks
331-.00386 -.0312 (331*2π)/18105 weeks
332-.02004 -.02463 (332*2π)/18105 weeks
333.00986 -.02607 (333*2π)/18105 weeks
334.00031 -.05296 (334*2π)/18105 weeks
335-.00786 -.05618 (335*2π)/18105 weeks
336-.01322 -.05442 (336*2π)/18105 weeks
337-.02775 -.06668 (337*2π)/18105 weeks
338-.05361 -.03989 (338*2π)/18105 weeks
339-.04048 -.01072 (339*2π)/18105 weeks
340-.02103 -.0197 (340*2π)/18105 weeks
341-.02962 -.01428 (341*2π)/18105 weeks
342-.00274 -.01124 (342*2π)/18105 weeks
343-.00391 -.04578 (343*2π)/18105 weeks
344-.00501 -.02993 (344*2π)/18105 weeks
345-.00391 -.0867 (345*2π)/18105 weeks
346-.07186 -.05744 (346*2π)/18105 weeks
347-.02668 -.00457 (347*2π)/18105 weeks
348-.02655 -.05862 (348*2π)/18105 weeks
349-.04495 -.02278 (349*2π)/18105 weeks
350-.02907 -.0324 (350*2π)/18105 weeks
351-.0394 -.02184 (351*2π)/18105 weeks
352-.01595 -.01539 (352*2π)/18105 weeks
353-.00719 -.03025 (353*2π)/18105 weeks
354-.03343 -.04574 (354*2π)/18105 weeks
355-.02307 -.02326 (355*2π)/18105 weeks
356-.01141 -.03422 (356*2π)/18105 weeks
357-.0219 -.03671 (357*2π)/18105 weeks
358-.00968 -.0386 (358*2π)/18105 weeks
359-.01432 -.04814 (359*2π)/18105 weeks
360-.03572 -.05577 (360*2π)/18105 weeks
361-.03075 -.04283 (361*2π)/18105 weeks
362-.03499 -.04962 (362*2π)/18105 weeks
363-.07776 -.02216 (363*2π)/18105 weeks
364-.01634 .00765 (364*2π)/18105 weeks
365-.01715 -.00821 (365*2π)/18105 weeks
366-.00951 -.021 (366*2π)/18105 weeks
367.01082 -.02919 (367*2π)/18105 weeks
368-.01465 -.06516 (368*2π)/18105 weeks
369-.05077 -.04548 (369*2π)/18105 weeks
370-.01869 -.0481 (370*2π)/18105 weeks
371-.06547 -.04716 (371*2π)/18105 weeks
372-.04385 -.03123 (372*2π)/18105 weeks
373-.06985 -.02417 (373*2π)/18105 weeks
374-.04017 .01394 (374*2π)/18105 weeks
375-.02134 -.01645 (375*2π)/18105 weeks
376-.0535 -.01018 (376*2π)/18105 weeks
377-.02176 .01326 (377*2π)/18105 weeks
378-.02683 -.01627 (378*2π)/18105 weeks
379-.01967 .0093 (379*2π)/18105 weeks
380-.0203 -.00885 (380*2π)/18105 weeks
381-.0222 .00738 (381*2π)/18105 weeks
382-.00326 .005 (382*2π)/18105 weeks
383.00245 -.00755 (383*2π)/18105 weeks
384.01107 -.01876 (384*2π)/18105 weeks
385-.00977 -.03399 (385*2π)/18105 weeks
386-.01632 -.0142 (386*2π)/18105 weeks
387.00709 -.01316 (387*2π)/18105 weeks
388.00525 -.01625 (388*2π)/18105 weeks
389.02128 -.0272 (389*2π)/18105 weeks
390.02882 -.06227 (390*2π)/18105 weeks
391-.01298 -.0517 (391*2π)/18105 weeks
392.01013 -.06259 (392*2π)/18105 weeks
393-.04859 -.08062 (393*2π)/18105 weeks
394-.04848 -.02025 (394*2π)/18105 weeks
395-.01807 -.04278 (395*2π)/18105 weeks
396-.04274 -.03845 (396*2π)/18105 weeks
397-.00808 -.03325 (397*2π)/18105 weeks
398-.04859 -.06611 (398*2π)/18105 weeks
399-.05715 -.01284 (399*2π)/18105 weeks
400-.03104 -.0152 (400*2π)/18105 weeks
401-.03297 -.00425 (401*2π)/18105 weeks
402-.0133 -.00484 (402*2π)/18105 weeks
403-.00805 -.02415 (403*2π)/18104 weeks
404-.03051 -.03224 (404*2π)/18104 weeks
405-.02235 -.0105 (405*2π)/18104 weeks
406-.02084 -.03964 (406*2π)/18104 weeks
407-.04767 -.02231 (407*2π)/18104 weeks
408-.02994 .00075 (408*2π)/18104 weeks
409-.03295 -.01454 (409*2π)/18104 weeks
410-.02732 -.00248 (410*2π)/18104 weeks
411-.00747 -.00241 (411*2π)/18104 weeks
412-.02501 -.00148 (412*2π)/18104 weeks
413-.01253 .01181 (413*2π)/18104 weeks
414.02083 .0094 (414*2π)/18104 weeks
415.00847 -.01642 (415*2π)/18104 weeks
416.02767 -.02213 (416*2π)/18104 weeks
417.0145 -.03783 (417*2π)/18104 weeks
418.00268 -.0569 (418*2π)/18104 weeks
419-.01934 -.04575 (419*2π)/18104 weeks
420-.00162 -.04054 (420*2π)/18104 weeks
421-.03102 -.03488 (421*2π)/18104 weeks
422.0012 -.03087 (422*2π)/18104 weeks
423-.00075 -.04922 (423*2π)/18104 weeks
424-.02409 -.04792 (424*2π)/18104 weeks
425-.01939 -.05154 (425*2π)/18104 weeks
426-.02702 -.05262 (426*2π)/18104 weeks
427-.03764 -.04493 (427*2π)/18104 weeks
428-.04102 -.03872 (428*2π)/18104 weeks
429-.02731 -.04192 (429*2π)/18104 weeks
430-.04509 -.02576 (430*2π)/18104 weeks
431-.02492 -.01866 (431*2π)/18104 weeks
432-.02801 -.0212 (432*2π)/18104 weeks
433-.01886 -.02337 (433*2π)/18104 weeks
434-.01627 -.03793 (434*2π)/18104 weeks
435-.0341 -.04776 (435*2π)/18104 weeks
436-.05308 -.02984 (436*2π)/18104 weeks
437-.0516 -.01409 (437*2π)/18104 weeks
438-.03959 .01489 (438*2π)/18104 weeks
439.00279 .01848 (439*2π)/18104 weeks
440.01011 -.01293 (440*2π)/18104 weeks
441.0133 -.01721 (441*2π)/18104 weeks
442.00789 -.05453 (442*2π)/18104 weeks
443-.03496 -.03446 (443*2π)/18104 weeks
444-.01486 -.01172 (444*2π)/18104 weeks
445-.00832 -.03072 (445*2π)/18104 weeks
446-.00664 -.01785 (446*2π)/18104 weeks
447.00757 -.0429 (447*2π)/18104 weeks
448-.02747 -.0504 (448*2π)/18104 weeks
449-.01087 -.02313 (449*2π)/18104 weeks
450-.01154 -.05418 (450*2π)/18104 weeks
451-.02734 -.03798 (451*2π)/18104 weeks
452-.01137 -.0473 (452*2π)/18104 weeks
453-.04854 -.06848 (453*2π)/18104 weeks
454-.0532 -.02583 (454*2π)/18104 weeks
455-.04232 -.02933 (455*2π)/18104 weeks
456-.05517 -.00592 (456*2π)/18104 weeks
457-.02761 -.00838 (457*2π)/18104 weeks
458-.02906 -.0153 (458*2π)/18104 weeks
459-.01665 -.00247 (459*2π)/18104 weeks
460-.01195 -.04547 (460*2π)/18104 weeks
461-.03768 -.02734 (461*2π)/18104 weeks
462-.04668 -.02612 (462*2π)/18104 weeks
463-.03633 -.0074 (463*2π)/18104 weeks
464-.01808 -.0139 (464*2π)/18104 weeks
465-.02823 -.02467 (465*2π)/18104 weeks
466-.02 -.00676 (466*2π)/18104 weeks
467-.0056 -.00619 (467*2π)/18104 weeks
468-.00432 -.01976 (468*2π)/18104 weeks
469-.00554 -.02527 (469*2π)/18104 weeks
470.00072 -.0279 (470*2π)/18104 weeks
471-.01061 -.04595 (471*2π)/18104 weeks
472-.02663 -.04262 (472*2π)/18104 weeks
473-.03903 -.03146 (473*2π)/18104 weeks
474-.03618 -.02305 (474*2π)/18104 weeks
475-.02746 -.00031 (475*2π)/18104 weeks
476.00013 -.01764 (476*2π)/18104 weeks
477-.01139 -.03987 (477*2π)/18104 weeks
478-.01409 -.02988 (478*2π)/18104 weeks
479-.01456 -.04723 (479*2π)/18104 weeks
480-.05125 -.04548 (480*2π)/18104 weeks
481-.03594 -.01637 (481*2π)/18104 weeks
482-.03136 -.01922 (482*2π)/18104 weeks
483-.02812 -.02874 (483*2π)/18104 weeks
484-.02489 -.00991 (484*2π)/18104 weeks
485-.02148 -.04449 (485*2π)/18104 weeks
486-.05825 -.02689 (486*2π)/18104 weeks
487-.04087 -.01068 (487*2π)/18104 weeks
488-.04721 .00015 (488*2π)/18104 weeks
489-.02909 .00139 (489*2π)/18104 weeks
490-.02217 .00737 (490*2π)/18104 weeks
491-.01795 .00264 (491*2π)/18104 weeks
492.00562 -.00154 (492*2π)/18104 weeks
493.00558 -.02961 (493*2π)/18104 weeks
494-.00839 -.02447 (494*2π)/18104 weeks
495-.01799 -.03645 (495*2π)/18104 weeks
496-.01729 -.01773 (496*2π)/18104 weeks
497-.02342 -.03691 (497*2π)/18104 weeks
498-.01602 -.00926 (498*2π)/18104 weeks
499-.00258 -.04197 (499*2π)/18104 weeks
500-.02903 -.03951 (500*2π)/18104 weeks
501-.02547 -.04251 (501*2π)/18104 weeks
502-.04183 -.0454 (502*2π)/18104 weeks
503-.04212 -.03031 (503*2π)/18104 weeks
504-.03734 -.02382 (504*2π)/18104 weeks
505-.03736 -.0169 (505*2π)/18104 weeks
506-.02775 -.02611 (506*2π)/18104 weeks
507-.02417 -.02612 (507*2π)/18104 weeks
508-.03775 -.03256 (508*2π)/18104 weeks
509-.03747 -.02898 (509*2π)/18104 weeks
510-.0495 -.02333 (510*2π)/18104 weeks
511-.04487 -.01114 (511*2π)/18104 weeks
512-.03876 -.0143 (512*2π)/18104 weeks
513-.0304 -.00197 (513*2π)/18104 weeks
514-.01764 -.0174 (514*2π)/18104 weeks
515-.03904 -.02519 (515*2π)/18104 weeks
516-.0253 -.00076 (516*2π)/18104 weeks
517-.03423 -.0197 (517*2π)/18104 weeks
518-.02365 .01544 (518*2π)/18103 weeks
519.00645 -.00895 (519*2π)/18103 weeks
520-.01114 -.03175 (520*2π)/18103 weeks
521-.02801 -.02254 (521*2π)/18103 weeks
522-.0135 -.02543 (522*2π)/18103 weeks
523-.03949 -.03121 (523*2π)/18103 weeks
524-.04236 -.01892 (524*2π)/18103 weeks
525-.04793 .0002 (525*2π)/18103 weeks
526-.03487 -.00591 (526*2π)/18103 weeks
527-.034 .00794 (527*2π)/18103 weeks
528-.00917 .00493 (528*2π)/18103 weeks
529-.01287 -.00823 (529*2π)/18103 weeks
530-.01293 -.02542 (530*2π)/18103 weeks
531-.02143 -.01766 (531*2π)/18103 weeks
532-.03455 -.01552 (532*2π)/18103 weeks
533-.0206 -.0024 (533*2π)/18103 weeks
534-.01879 -.00646 (534*2π)/18103 weeks
535-.00843 -.0123 (535*2π)/18103 weeks
536-.01143 -.02241 (536*2π)/18103 weeks
537-.02395 -.0288 (537*2π)/18103 weeks
538-.01579 -.02047 (538*2π)/18103 weeks
539-.03147 -.04387